dynarmic/src/frontend/A64/translate/impl/simd_two_register_misc.cpp

487 lines
14 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include "frontend/A64/translate/impl/impl.h"
namespace Dynarmic::A64 {
namespace {
enum class ComparisonType {
EQ,
GE,
GT,
LE,
LT,
};
bool CompareAgainstZero(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, ComparisonType type) {
if (size == 0b11 && !Q) {
return v.ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = v.V(datasize, Vn);
const IR::U128 zero = v.ir.ZeroVector();
IR::U128 result = [&] {
switch (type) {
case ComparisonType::EQ:
return v.ir.VectorEqual(esize, operand, zero);
case ComparisonType::GE:
return v.ir.VectorGreaterEqualSigned(esize, operand, zero);
case ComparisonType::GT:
return v.ir.VectorGreaterSigned(esize, operand, zero);
case ComparisonType::LE:
return v.ir.VectorLessEqualSigned(esize, operand, zero);
case ComparisonType::LT:
default:
return v.ir.VectorLessSigned(esize, operand, zero);
}
}();
if (datasize == 64) {
result = v.ir.VectorZeroUpper(result);
}
v.V(datasize, Vd, result);
return true;
}
bool FPCompareAgainstZero(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, ComparisonType type) {
if (sz && !Q) {
return v.ReservedValue();
}
const size_t esize = sz ? 64 : 32;
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = v.V(datasize, Vn);
const IR::U128 zero = v.ir.ZeroVector();
const IR::U128 result = [&] {
switch (type) {
case ComparisonType::EQ:
return v.ir.FPVectorEqual(esize, operand, zero);
case ComparisonType::GE:
return v.ir.FPVectorGreaterEqual(esize, operand, zero);
case ComparisonType::GT:
return v.ir.FPVectorGreater(esize, operand, zero);
case ComparisonType::LE:
return v.ir.FPVectorGreaterEqual(esize, zero, operand);
case ComparisonType::LT:
return v.ir.FPVectorGreater(esize, zero, operand);
}
UNREACHABLE();
return IR::U128{};
}();
v.V(datasize, Vd, result);
return true;
}
enum class Signedness {
Signed,
Unsigned
};
bool IntegerConvertToFloat(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, Signedness signedness) {
if (sz && !Q) {
return v.ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = v.V(datasize, Vn);
const IR::U128 result = [&] {
if (signedness == Signedness::Signed) {
return sz ? v.ir.FPVectorS64ToDouble(operand) : v.ir.FPVectorS32ToSingle(operand);
}
return sz ? v.ir.FPVectorU64ToDouble(operand) : v.ir.FPVectorU32ToSingle(operand);
}();
v.V(datasize, Vd, result);
return true;
}
bool SaturatedNarrow(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, IR::U128 (IR::IREmitter::*fn)(size_t, const IR::U128&)) {
if (size == 0b11) {
return v.ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = 64;
const size_t part = Q ? 1 : 0;
const IR::U128 operand = v.V(2 * datasize, Vn);
const IR::U128 result = (v.ir.*fn)(2 * esize, operand);
v.Vpart(datasize, Vd, part, result);
return true;
}
} // Anonymous namespace
bool TranslatorVisitor::CNT(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size != 0b00) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 result = ir.VectorPopulationCount(operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::CMGE_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::GE);
}
bool TranslatorVisitor::CMGT_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::GT);
}
bool TranslatorVisitor::CMEQ_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::EQ);
}
bool TranslatorVisitor::CMLE_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::LE);
}
bool TranslatorVisitor::CMLT_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::LT);
}
bool TranslatorVisitor::ABS_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (!Q && size == 0b11) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = 8 << size.ZeroExtend();
const IR::U128 data = V(datasize, Vn);
const IR::U128 result = ir.VectorAbs(esize, data);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::XTN(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = 64;
const size_t part = Q ? 1 : 0;
const IR::U128 operand = V(2 * datasize, Vn);
const IR::U128 result = ir.VectorNarrow(2 * esize, operand);
Vpart(datasize, Vd, part, result);
return true;
}
bool TranslatorVisitor::FABS_1(bool Q, Vec Vn, Vec Vd) {
const size_t datasize = Q ? 128 : 64;
const size_t esize = 16;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 result = ir.FPVectorAbs(esize, operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::FABS_2(bool Q, bool sz, Vec Vn, Vec Vd) {
if (sz && !Q) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = sz ? 64 : 32;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 result = ir.FPVectorAbs(esize, operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::FCMEQ_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::EQ);
}
bool TranslatorVisitor::FCMGE_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::GE);
}
bool TranslatorVisitor::FCMGT_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::GT);
}
bool TranslatorVisitor::FCMLE_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::LE);
}
bool TranslatorVisitor::FCMLT_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::LT);
}
bool TranslatorVisitor::FRECPE_4(bool Q, bool sz, Vec Vn, Vec Vd) {
if (sz && !Q) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = sz ? 64 : 32;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 result = ir.FPVectorRecipEstimate(esize, operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::FRSQRTE_4(bool Q, bool sz, Vec Vn, Vec Vd) {
if (sz && !Q) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = sz ? 64 : 32;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 result = ir.FPVectorRSqrtEstimate(esize, operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::FNEG_1(bool Q, Vec Vn, Vec Vd) {
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 mask = ir.VectorBroadcast(64, I(64, 0x8000800080008000));
const IR::U128 result = ir.VectorEor(operand, mask);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::FNEG_2(bool Q, bool sz, Vec Vn, Vec Vd) {
if (sz && !Q) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = sz ? 64 : 32;
const size_t mask_value = esize == 64 ? 0x8000000000000000 : 0x8000000080000000;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 mask = ir.VectorBroadcast(esize, I(esize, mask_value));
const IR::U128 result = ir.VectorEor(operand, mask);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::NEG_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11 && !Q) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 zero = ir.ZeroVector();
const IR::U128 result = ir.VectorSub(esize, zero, operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::SQXTUN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorSignedSaturatedNarrowToUnsigned);
}
bool TranslatorVisitor::SQXTN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorSignedSaturatedNarrowToSigned);
}
bool TranslatorVisitor::UQXTN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorUnsignedSaturatedNarrow);
}
bool TranslatorVisitor::NOT(bool Q, Vec Vn, Vec Vd) {
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
IR::U128 result = ir.VectorNot(operand);
if (datasize == 64) {
result = ir.VectorZeroUpper(result);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::RBIT_asimd(bool Q, Vec Vn, Vec Vd) {
const size_t datasize = Q ? 128 : 64;
const IR::U128 data = V(datasize, Vn);
const IR::U128 result = ir.VectorReverseBits(data);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::REV16_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size != 0) {
return UnallocatedEncoding();
}
const size_t datasize = Q ? 128 : 64;
constexpr size_t esize = 16;
const IR::U128 data = V(datasize, Vn);
const IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, 8),
ir.VectorLogicalShiftLeft(esize, data, 8));
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::REV32_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
const u32 zext_size = size.ZeroExtend();
if (zext_size > 1) {
return UnallocatedEncoding();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = 16 << zext_size;
const u8 shift = static_cast<u8>(8 << zext_size);
const IR::U128 data = V(datasize, Vn);
// TODO: Consider factoring byte swapping code out into its own opcode.
// Technically the rest of the following code can be a PSHUFB
// in the presence of SSSE3.
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift),
ir.VectorLogicalShiftLeft(esize, data, shift));
// If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword
// e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially
// changing [3, 2, 1, 0] to [2, 3, 0, 1]
if (zext_size == 0) {
result = ir.VectorShuffleLowHalfwords(result, 0b10110001);
result = ir.VectorShuffleHighHalfwords(result, 0b10110001);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::REV64_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
const u32 zext_size = size.ZeroExtend();
if (zext_size >= 3) {
return UnallocatedEncoding();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = 16 << zext_size;
const u8 shift = static_cast<u8>(8 << zext_size);
const IR::U128 data = V(datasize, Vn);
// TODO: Consider factoring byte swapping code out into its own opcode.
// Technically the rest of the following code can be a PSHUFB
// in the presence of SSSE3.
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift),
ir.VectorLogicalShiftLeft(esize, data, shift));
switch (zext_size) {
case 0: // 8-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b00011011);
result = ir.VectorShuffleHighHalfwords(result, 0b00011011);
break;
case 1: // 16-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b01001110);
result = ir.VectorShuffleHighHalfwords(result, 0b01001110);
break;
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::UADDLP(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
IR::U128 result = ir.VectorPairedAddUnsignedWiden(esize, operand);
if (datasize == 64) {
result = ir.VectorZeroUpper(result);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::SADDLP(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
IR::U128 result = ir.VectorPairedAddSignedWiden(esize, operand);
if (datasize == 64) {
result = ir.VectorZeroUpper(result);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::SCVTF_int_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return IntegerConvertToFloat(*this, Q, sz, Vn, Vd, Signedness::Signed);
}
bool TranslatorVisitor::UCVTF_int_4(bool Q, bool sz, Vec Vn, Vec Vd) {
return IntegerConvertToFloat(*this, Q, sz, Vn, Vd, Signedness::Unsigned);
}
bool TranslatorVisitor::SHLL(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend();
const IR::U128 operand = ir.VectorZeroExtend(esize, Vpart(64, Vn, Q));
const IR::U128 result = ir.VectorLogicalShiftLeft(esize * 2, operand, static_cast<u8>(esize));
V(128, Vd, result);
return true;
}
} // namespace Dynarmic::A64