/* This file is part of the dynarmic project. * Copyright (c) 2018 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include "frontend/A64/translate/impl/impl.h" namespace Dynarmic::A64 { namespace { enum class ComparisonType { EQ, GE, GT, LE, LT, }; bool CompareAgainstZero(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, ComparisonType type) { if (size == 0b11 && !Q) { return v.ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 zero = v.ir.ZeroVector(); IR::U128 result = [&] { switch (type) { case ComparisonType::EQ: return v.ir.VectorEqual(esize, operand, zero); case ComparisonType::GE: return v.ir.VectorGreaterEqualSigned(esize, operand, zero); case ComparisonType::GT: return v.ir.VectorGreaterSigned(esize, operand, zero); case ComparisonType::LE: return v.ir.VectorLessEqualSigned(esize, operand, zero); case ComparisonType::LT: default: return v.ir.VectorLessSigned(esize, operand, zero); } }(); if (datasize == 64) { result = v.ir.VectorZeroUpper(result); } v.V(datasize, Vd, result); return true; } bool FPCompareAgainstZero(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, ComparisonType type) { if (sz && !Q) { return v.ReservedValue(); } const size_t esize = sz ? 64 : 32; const size_t datasize = Q ? 128 : 64; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 zero = v.ir.ZeroVector(); const IR::U128 result = [&] { switch (type) { case ComparisonType::EQ: return v.ir.FPVectorEqual(esize, operand, zero); case ComparisonType::GE: return v.ir.FPVectorGreaterEqual(esize, operand, zero); case ComparisonType::GT: return v.ir.FPVectorGreater(esize, operand, zero); case ComparisonType::LE: return v.ir.FPVectorGreaterEqual(esize, zero, operand); case ComparisonType::LT: return v.ir.FPVectorGreater(esize, zero, operand); } UNREACHABLE(); return IR::U128{}; }(); v.V(datasize, Vd, result); return true; } enum class Signedness { Signed, Unsigned }; bool IntegerConvertToFloat(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, Signedness signedness) { if (sz && !Q) { return v.ReservedValue(); } const size_t datasize = Q ? 128 : 64; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 result = [&] { if (signedness == Signedness::Signed) { return sz ? v.ir.FPVectorS64ToDouble(operand) : v.ir.FPVectorS32ToSingle(operand); } return sz ? v.ir.FPVectorU64ToDouble(operand) : v.ir.FPVectorU32ToSingle(operand); }(); v.V(datasize, Vd, result); return true; } bool SaturatedNarrow(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, IR::U128 (IR::IREmitter::*fn)(size_t, const IR::U128&)) { if (size == 0b11) { return v.ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = 64; const size_t part = Q ? 1 : 0; const IR::U128 operand = v.V(2 * datasize, Vn); const IR::U128 result = (v.ir.*fn)(2 * esize, operand); v.Vpart(datasize, Vd, part, result); return true; } } // Anonymous namespace bool TranslatorVisitor::CNT(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size != 0b00) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.VectorPopulationCount(operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::CMGE_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::GE); } bool TranslatorVisitor::CMGT_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::GT); } bool TranslatorVisitor::CMEQ_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::EQ); } bool TranslatorVisitor::CMLE_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::LE); } bool TranslatorVisitor::CMLT_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::LT); } bool TranslatorVisitor::ABS_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (!Q && size == 0b11) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = 8 << size.ZeroExtend(); const IR::U128 data = V(datasize, Vn); const IR::U128 result = ir.VectorAbs(esize, data); V(datasize, Vd, result); return true; } bool TranslatorVisitor::XTN(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = 64; const size_t part = Q ? 1 : 0; const IR::U128 operand = V(2 * datasize, Vn); const IR::U128 result = ir.VectorNarrow(2 * esize, operand); Vpart(datasize, Vd, part, result); return true; } bool TranslatorVisitor::FABS_1(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const size_t esize = 16; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorAbs(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FABS_2(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorAbs(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FCMEQ_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::EQ); } bool TranslatorVisitor::FCMGE_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::GE); } bool TranslatorVisitor::FCMGT_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::GT); } bool TranslatorVisitor::FCMLE_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::LE); } bool TranslatorVisitor::FCMLT_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::LT); } bool TranslatorVisitor::FRECPE_4(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorRecipEstimate(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FRSQRTE_4(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorRSqrtEstimate(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FNEG_1(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 mask = ir.VectorBroadcast(64, I(64, 0x8000800080008000)); const IR::U128 result = ir.VectorEor(operand, mask); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FNEG_2(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const size_t mask_value = esize == 64 ? 0x8000000000000000 : 0x8000000080000000; const IR::U128 operand = V(datasize, Vn); const IR::U128 mask = ir.VectorBroadcast(esize, I(esize, mask_value)); const IR::U128 result = ir.VectorEor(operand, mask); V(datasize, Vd, result); return true; } bool TranslatorVisitor::NEG_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11 && !Q) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 zero = ir.ZeroVector(); const IR::U128 result = ir.VectorSub(esize, zero, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::SQXTUN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorSignedSaturatedNarrowToUnsigned); } bool TranslatorVisitor::SQXTN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorSignedSaturatedNarrowToSigned); } bool TranslatorVisitor::UQXTN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorUnsignedSaturatedNarrow); } bool TranslatorVisitor::NOT(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); IR::U128 result = ir.VectorNot(operand); if (datasize == 64) { result = ir.VectorZeroUpper(result); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::RBIT_asimd(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const IR::U128 data = V(datasize, Vn); const IR::U128 result = ir.VectorReverseBits(data); V(datasize, Vd, result); return true; } bool TranslatorVisitor::REV16_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size != 0) { return UnallocatedEncoding(); } const size_t datasize = Q ? 128 : 64; constexpr size_t esize = 16; const IR::U128 data = V(datasize, Vn); const IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, 8), ir.VectorLogicalShiftLeft(esize, data, 8)); V(datasize, Vd, result); return true; } bool TranslatorVisitor::REV32_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { const u32 zext_size = size.ZeroExtend(); if (zext_size > 1) { return UnallocatedEncoding(); } const size_t datasize = Q ? 128 : 64; const size_t esize = 16 << zext_size; const u8 shift = static_cast(8 << zext_size); const IR::U128 data = V(datasize, Vn); // TODO: Consider factoring byte swapping code out into its own opcode. // Technically the rest of the following code can be a PSHUFB // in the presence of SSSE3. IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift), ir.VectorLogicalShiftLeft(esize, data, shift)); // If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword // e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially // changing [3, 2, 1, 0] to [2, 3, 0, 1] if (zext_size == 0) { result = ir.VectorShuffleLowHalfwords(result, 0b10110001); result = ir.VectorShuffleHighHalfwords(result, 0b10110001); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::REV64_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { const u32 zext_size = size.ZeroExtend(); if (zext_size >= 3) { return UnallocatedEncoding(); } const size_t datasize = Q ? 128 : 64; const size_t esize = 16 << zext_size; const u8 shift = static_cast(8 << zext_size); const IR::U128 data = V(datasize, Vn); // TODO: Consider factoring byte swapping code out into its own opcode. // Technically the rest of the following code can be a PSHUFB // in the presence of SSSE3. IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift), ir.VectorLogicalShiftLeft(esize, data, shift)); switch (zext_size) { case 0: // 8-bit elements result = ir.VectorShuffleLowHalfwords(result, 0b00011011); result = ir.VectorShuffleHighHalfwords(result, 0b00011011); break; case 1: // 16-bit elements result = ir.VectorShuffleLowHalfwords(result, 0b01001110); result = ir.VectorShuffleHighHalfwords(result, 0b01001110); break; } V(datasize, Vd, result); return true; } bool TranslatorVisitor::UADDLP(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); IR::U128 result = ir.VectorPairedAddUnsignedWiden(esize, operand); if (datasize == 64) { result = ir.VectorZeroUpper(result); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::SADDLP(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); IR::U128 result = ir.VectorPairedAddSignedWiden(esize, operand); if (datasize == 64) { result = ir.VectorZeroUpper(result); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::SCVTF_int_4(bool Q, bool sz, Vec Vn, Vec Vd) { return IntegerConvertToFloat(*this, Q, sz, Vn, Vd, Signedness::Signed); } bool TranslatorVisitor::UCVTF_int_4(bool Q, bool sz, Vec Vn, Vec Vd) { return IntegerConvertToFloat(*this, Q, sz, Vn, Vd, Signedness::Unsigned); } bool TranslatorVisitor::SHLL(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const IR::U128 operand = ir.VectorZeroExtend(esize, Vpart(64, Vn, Q)); const IR::U128 result = ir.VectorLogicalShiftLeft(esize * 2, operand, static_cast(esize)); V(128, Vd, result); return true; } } // namespace Dynarmic::A64