dynarmic/src/assembler.cpp
Merry e4a733d5b2 Squashed 'externals/biscuit/' content from commit 1d53c9e6
git-subtree-dir: externals/biscuit
git-subtree-split: 1d53c9e6cfe56544982200a5bac15a5de064936b
2024-03-02 19:36:24 +00:00

1401 lines
45 KiB
C++

#include <biscuit/assert.hpp>
#include <biscuit/assembler.hpp>
#include <bit>
#include <cstring>
#include <utility>
#include "assembler_util.hpp"
namespace biscuit {
Assembler::Assembler(size_t capacity)
: m_buffer(capacity) {}
Assembler::Assembler(uint8_t* buffer, size_t capacity, ArchFeature features)
: m_buffer(buffer, capacity), m_features{features} {}
Assembler::~Assembler() = default;
CodeBuffer& Assembler::GetCodeBuffer() {
return m_buffer;
}
CodeBuffer Assembler::SwapCodeBuffer(CodeBuffer&& buffer) noexcept {
return std::exchange(m_buffer, std::move(buffer));
}
void Assembler::Bind(Label* label) {
BindToOffset(label, m_buffer.GetCursorOffset());
}
void Assembler::ADD(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b000, rd, 0b0110011);
}
void Assembler::ADDI(GPR rd, GPR rs, int32_t imm) noexcept {
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b000, rd, 0b0010011);
}
void Assembler::AND(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b111, rd, 0b0110011);
}
void Assembler::ANDI(GPR rd, GPR rs, uint32_t imm) noexcept {
EmitIType(m_buffer, imm, rs, 0b111, rd, 0b0010011);
}
void Assembler::AUIPC(GPR rd, int32_t imm) noexcept {
EmitUType(m_buffer, static_cast<uint32_t>(imm), rd, 0b0010111);
}
void Assembler::BEQ(GPR rs1, GPR rs2, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BEQ(rs1, rs2, static_cast<int32_t>(address));
}
void Assembler::BEQZ(GPR rs, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BEQZ(rs, static_cast<int32_t>(address));
}
void Assembler::BGE(GPR rs1, GPR rs2, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BGE(rs1, rs2, static_cast<int32_t>(address));
}
void Assembler::BGEU(GPR rs1, GPR rs2, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BGEU(rs1, rs2, static_cast<int32_t>(address));
}
void Assembler::BGEZ(GPR rs, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BGEZ(rs, static_cast<int32_t>(address));
}
void Assembler::BGT(GPR rs, GPR rt, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BGT(rs, rt, static_cast<int32_t>(address));
}
void Assembler::BGTU(GPR rs, GPR rt, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BGTU(rs, rt, static_cast<int32_t>(address));
}
void Assembler::BGTZ(GPR rs, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BGTZ(rs, static_cast<int32_t>(address));
}
void Assembler::BLE(GPR rs, GPR rt, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BLE(rs, rt, static_cast<int32_t>(address));
}
void Assembler::BLEU(GPR rs, GPR rt, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BLEU(rs, rt, static_cast<int32_t>(address));
}
void Assembler::BLEZ(GPR rs, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BLEZ(rs, static_cast<int32_t>(address));
}
void Assembler::BLT(GPR rs1, GPR rs2, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BLT(rs1, rs2, static_cast<int32_t>(address));
}
void Assembler::BLTU(GPR rs1, GPR rs2, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BLTU(rs1, rs2, static_cast<int32_t>(address));
}
void Assembler::BLTZ(GPR rs, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BLTZ(rs, static_cast<int32_t>(address));
}
void Assembler::BNE(GPR rs1, GPR rs2, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BNE(rs1, rs2, static_cast<int32_t>(address));
}
void Assembler::BNEZ(GPR rs, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BNEZ(rs, static_cast<int32_t>(address));
}
void Assembler::BEQ(GPR rs1, GPR rs2, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidBTypeImm(imm));
EmitBType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b000, 0b1100011);
}
void Assembler::BEQZ(GPR rs, int32_t imm) noexcept {
BEQ(rs, x0, imm);
}
void Assembler::BGE(GPR rs1, GPR rs2, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidBTypeImm(imm));
EmitBType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b101, 0b1100011);
}
void Assembler::BGEU(GPR rs1, GPR rs2, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidBTypeImm(imm));
EmitBType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b111, 0b1100011);
}
void Assembler::BGEZ(GPR rs, int32_t imm) noexcept {
BGE(rs, x0, imm);
}
void Assembler::BGT(GPR rs, GPR rt, int32_t imm) noexcept {
BLT(rt, rs, imm);
}
void Assembler::BGTU(GPR rs, GPR rt, int32_t imm) noexcept {
BLTU(rt, rs, imm);
}
void Assembler::BGTZ(GPR rs, int32_t imm) noexcept {
BLT(x0, rs, imm);
}
void Assembler::BLE(GPR rs, GPR rt, int32_t imm) noexcept {
BGE(rt, rs, imm);
}
void Assembler::BLEU(GPR rs, GPR rt, int32_t imm) noexcept {
BGEU(rt, rs, imm);
}
void Assembler::BLEZ(GPR rs, int32_t imm) noexcept {
BGE(x0, rs, imm);
}
void Assembler::BLT(GPR rs1, GPR rs2, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidBTypeImm(imm));
EmitBType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b100, 0b1100011);
}
void Assembler::BLTU(GPR rs1, GPR rs2, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidBTypeImm(imm));
EmitBType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b110, 0b1100011);
}
void Assembler::BLTZ(GPR rs, int32_t imm) noexcept {
BLT(rs, x0, imm);
}
void Assembler::BNE(GPR rs1, GPR rs2, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidBTypeImm(imm));
EmitBType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b001, 0b1100011);
}
void Assembler::BNEZ(GPR rs, int32_t imm) noexcept {
BNE(x0, rs, imm);
}
void Assembler::CALL(int32_t offset) noexcept {
const auto uimm = static_cast<uint32_t>(offset);
const auto lower = uimm & 0xFFF;
const auto upper = (uimm & 0xFFFFF000) >> 12;
const auto needs_increment = (uimm & 0x800) != 0;
// Sign-extend the lower portion if the MSB of it is set.
const auto new_lower = needs_increment ? static_cast<int32_t>(lower << 20) >> 20
: static_cast<int32_t>(lower);
const auto new_upper = needs_increment ? upper + 1 : upper;
AUIPC(x1, static_cast<int32_t>(new_upper));
JALR(x1, new_lower, x1);
}
void Assembler::EBREAK() noexcept {
m_buffer.Emit32(0x00100073);
}
void Assembler::ECALL() noexcept {
m_buffer.Emit32(0x00000073);
}
void Assembler::FENCE() noexcept {
FENCE(FenceOrder::IORW, FenceOrder::IORW);
}
void Assembler::FENCE(FenceOrder pred, FenceOrder succ) noexcept {
EmitFENCE(m_buffer, 0b0000, pred, succ, x0, 0b000, x0, 0b0001111);
}
void Assembler::FENCEI(GPR rd, GPR rs, uint32_t imm) noexcept {
m_buffer.Emit32(((imm & 0xFFF) << 20) | (rs.Index() << 15) | 0x1000U | (rd.Index() << 7) | 0b0001111);
}
void Assembler::FENCETSO() noexcept {
EmitFENCE(m_buffer, 0b1000, FenceOrder::RW, FenceOrder::RW, x0, 0b000, x0, 0b0001111);
}
void Assembler::J(Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BISCUIT_ASSERT(IsValidJTypeImm(address));
J(static_cast<int32_t>(address));
}
void Assembler::JAL(Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BISCUIT_ASSERT(IsValidJTypeImm(address));
JAL(static_cast<int32_t>(address));
}
void Assembler::JAL(GPR rd, Label* label) noexcept {
const auto address = LinkAndGetOffset(label);
BISCUIT_ASSERT(IsValidJTypeImm(address));
JAL(rd, static_cast<int32_t>(address));
}
void Assembler::J(int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidJTypeImm(imm));
JAL(x0, imm);
}
void Assembler::JAL(int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidJTypeImm(imm));
EmitJType(m_buffer, static_cast<uint32_t>(imm), x1, 0b1101111);
}
void Assembler::JAL(GPR rd, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidJTypeImm(imm));
EmitJType(m_buffer, static_cast<uint32_t>(imm), rd, 0b1101111);
}
void Assembler::JALR(GPR rs) noexcept {
JALR(x1, 0, rs);
}
void Assembler::JALR(GPR rd, int32_t imm, GPR rs1) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs1, 0b000, rd, 0b1100111);
}
void Assembler::JR(GPR rs) noexcept {
JALR(x0, 0, rs);
}
void Assembler::LB(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b000, rd, 0b0000011);
}
void Assembler::LBU(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b100, rd, 0b0000011);
}
void Assembler::LH(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b001, rd, 0b0000011);
}
void Assembler::LHU(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b101, rd, 0b0000011);
}
void Assembler::LI(GPR rd, uint64_t imm) noexcept {
if (IsRV32(m_features)) {
// Depending on imm, the following instructions are emitted.
// hi20 == 0 -> ADDI
// lo12 == 0 && hi20 != 0 -> LUI
// otherwise -> LUI+ADDI
// Add 0x800 to cancel out the signed extension of ADDI.
const auto uimm32 = static_cast<uint32_t>(imm);
const auto hi20 = (uimm32 + 0x800) >> 12 & 0xFFFFF;
const auto lo12 = static_cast<int32_t>(uimm32) & 0xFFF;
GPR rs1 = zero;
if (hi20 != 0) {
LUI(rd, hi20);
rs1 = rd;
}
if (lo12 != 0 || hi20 == 0) {
ADDI(rd, rs1, lo12);
}
} else {
// For 64-bit imm, a sequence of up to 8 instructions (i.e. LUI+ADDIW+SLLI+
// ADDI+SLLI+ADDI+SLLI+ADDI) is emitted.
// In the following, imm is processed from LSB to MSB while instruction emission
// is performed from MSB to LSB by calling LI() recursively. In each recursion,
// the lowest 12 bits are removed from imm and the optimal shift amount is
// calculated. Then, the remaining part of imm is processed recursively and
// LI() get called as soon as it fits into 32 bits.
if (static_cast<uint64_t>(static_cast<int64_t>(imm << 32) >> 32) == imm) {
// Depending on imm, the following instructions are emitted.
// hi20 == 0 -> ADDIW
// lo12 == 0 && hi20 != 0 -> LUI
// otherwise -> LUI+ADDIW
// Add 0x800 to cancel out the signed extension of ADDIW.
const auto hi20 = (static_cast<uint32_t>(imm) + 0x800) >> 12 & 0xFFFFF;
const auto lo12 = static_cast<int32_t>(imm) & 0xFFF;
GPR rs1 = zero;
if (hi20 != 0) {
LUI(rd, hi20);
rs1 = rd;
}
if (lo12 != 0 || hi20 == 0) {
ADDIW(rd, rs1, lo12);
}
return;
}
const auto lo12 = static_cast<int32_t>(static_cast<int64_t>(imm << 52) >> 52);
// Add 0x800 to cancel out the signed extension of ADDI.
uint64_t hi52 = (imm + 0x800) >> 12;
const uint32_t shift = 12 + static_cast<uint32_t>(std::countr_zero(hi52));
hi52 = static_cast<uint64_t>((static_cast<int64_t>(hi52 >> (shift - 12)) << shift) >> shift);
LI(rd, hi52);
SLLI(rd, rd, shift);
if (lo12 != 0) {
ADDI(rd, rd, lo12);
}
}
}
void Assembler::LUI(GPR rd, uint32_t imm) noexcept {
EmitUType(m_buffer, imm, rd, 0b0110111);
}
void Assembler::LW(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b010, rd, 0b0000011);
}
void Assembler::MV(GPR rd, GPR rs) noexcept {
ADDI(rd, rs, 0);
}
void Assembler::NEG(GPR rd, GPR rs) noexcept {
SUB(rd, x0, rs);
}
void Assembler::NOP() noexcept {
ADDI(x0, x0, 0);
}
void Assembler::NOT(GPR rd, GPR rs) noexcept {
XORI(rd, rs, UINT32_MAX);
}
void Assembler::OR(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b110, rd, 0b0110011);
}
void Assembler::ORI(GPR rd, GPR rs, uint32_t imm) noexcept {
EmitIType(m_buffer, imm, rs, 0b110, rd, 0b0010011);
}
void Assembler::PAUSE() noexcept {
m_buffer.Emit32(0x0100000F);
}
void Assembler::RET() noexcept {
JALR(x0, 0, x1);
}
void Assembler::SB(GPR rs2, int32_t imm, GPR rs1) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitSType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b000, 0b0100011);
}
void Assembler::SEQZ(GPR rd, GPR rs) noexcept {
SLTIU(rd, rs, 1);
}
void Assembler::SGTZ(GPR rd, GPR rs) noexcept {
SLT(rd, x0, rs);
}
void Assembler::SH(GPR rs2, int32_t imm, GPR rs1) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitSType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b001, 0b0100011);
}
void Assembler::SLL(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b001, rd, 0b0110011);
}
void Assembler::SLLI(GPR rd, GPR rs, uint32_t shift) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(shift <= 31);
EmitIType(m_buffer, shift & 0x1F, rs, 0b001, rd, 0b0010011);
} else {
BISCUIT_ASSERT(shift <= 63);
EmitIType(m_buffer, shift & 0x3F, rs, 0b001, rd, 0b0010011);
}
}
void Assembler::SLT(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b010, rd, 0b0110011);
}
void Assembler::SLTI(GPR rd, GPR rs, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b010, rd, 0b0010011);
}
void Assembler::SLTIU(GPR rd, GPR rs, int32_t imm) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b011, rd, 0b0010011);
}
void Assembler::SLTU(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b011, rd, 0b0110011);
}
void Assembler::SLTZ(GPR rd, GPR rs) noexcept {
SLT(rd, rs, x0);
}
void Assembler::SNEZ(GPR rd, GPR rs) noexcept {
SLTU(rd, x0, rs);
}
void Assembler::SRA(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0100000, rhs, lhs, 0b101, rd, 0b0110011);
}
void Assembler::SRAI(GPR rd, GPR rs, uint32_t shift) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(shift <= 31);
EmitIType(m_buffer, (0b0100000 << 5) | (shift & 0x1F), rs, 0b101, rd, 0b0010011);
} else {
BISCUIT_ASSERT(shift <= 63);
EmitIType(m_buffer, (0b0100000 << 5) | (shift & 0x3F), rs, 0b101, rd, 0b0010011);
}
}
void Assembler::SRL(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b101, rd, 0b0110011);
}
void Assembler::SRLI(GPR rd, GPR rs, uint32_t shift) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(shift <= 31);
EmitIType(m_buffer, shift & 0x1F, rs, 0b101, rd, 0b0010011);
} else {
BISCUIT_ASSERT(shift <= 63);
EmitIType(m_buffer, shift & 0x3F, rs, 0b101, rd, 0b0010011);
}
}
void Assembler::SUB(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0100000, rhs, lhs, 0b000, rd, 0b0110011);
}
void Assembler::SW(GPR rs2, int32_t imm, GPR rs1) noexcept {
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitSType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b010, 0b0100011);
}
void Assembler::XOR(GPR rd, GPR lhs, GPR rhs) noexcept {
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b100, rd, 0b0110011);
}
void Assembler::XORI(GPR rd, GPR rs, uint32_t imm) noexcept {
EmitIType(m_buffer, imm, rs, 0b100, rd, 0b0010011);
}
// RV64I Instructions
void Assembler::ADDIW(GPR rd, GPR rs, int32_t imm) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b000, rd, 0b0011011);
}
void Assembler::ADDW(GPR rd, GPR lhs, GPR rhs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b000, rd, 0b0111011);
}
void Assembler::LD(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b011, rd, 0b0000011);
}
void Assembler::LWU(GPR rd, int32_t imm, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitIType(m_buffer, static_cast<uint32_t>(imm), rs, 0b110, rd, 0b0000011);
}
void Assembler::SD(GPR rs2, int32_t imm, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(IsValidSigned12BitImm(imm));
EmitSType(m_buffer, static_cast<uint32_t>(imm), rs2, rs1, 0b011, 0b0100011);
}
void Assembler::SLLIW(GPR rd, GPR rs, uint32_t shift) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(shift <= 31);
EmitIType(m_buffer, shift & 0x1F, rs, 0b001, rd, 0b0011011);
}
void Assembler::SRAIW(GPR rd, GPR rs, uint32_t shift) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(shift <= 31);
EmitIType(m_buffer, (0b0100000 << 5) | (shift & 0x1F), rs, 0b101, rd, 0b0011011);
}
void Assembler::SRLIW(GPR rd, GPR rs, uint32_t shift) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(shift <= 31);
EmitIType(m_buffer, shift & 0x1F, rs, 0b101, rd, 0b0011011);
}
void Assembler::SLLW(GPR rd, GPR lhs, GPR rhs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b001, rd, 0b0111011);
}
void Assembler::SRAW(GPR rd, GPR lhs, GPR rhs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0100000, rhs, lhs, 0b101, rd, 0b0111011);
}
void Assembler::SRLW(GPR rd, GPR lhs, GPR rhs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0000000, rhs, lhs, 0b101, rd, 0b0111011);
}
void Assembler::SUBW(GPR rd, GPR lhs, GPR rhs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0100000, rhs, lhs, 0b000, rd, 0b0111011);
}
// Zawrs Extension Instructions
void Assembler::WRS_NTO() noexcept {
EmitIType(m_buffer, 0b01101, x0, 0, x0, 0b1110011);
}
void Assembler::WRS_STO() noexcept {
EmitIType(m_buffer, 0b11101, x0, 0, x0, 0b1110011);
}
// Zacas Extension Instructions
void Assembler::AMOCAS_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT((rd.Index() % 2) == 0);
BISCUIT_ASSERT((rs1.Index() % 2) == 0);
BISCUIT_ASSERT((rs2.Index() % 2) == 0);
}
EmitAtomic(m_buffer, 0b00101, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOCAS_Q(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
// Both rd and rs2 indicate a register pair, so they need to be even-numbered.
BISCUIT_ASSERT((rd.Index() % 2) == 0);
BISCUIT_ASSERT((rs1.Index() % 2) == 0);
BISCUIT_ASSERT((rs2.Index() % 2) == 0);
EmitAtomic(m_buffer, 0b00101, ordering, rs2, rs1, 0b100, rd, 0b0101111);
}
void Assembler::AMOCAS_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b00101, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
// Zicond Extension Instructions
void Assembler::CZERO_EQZ(GPR rd, GPR value, GPR condition) noexcept {
EmitRType(m_buffer, 0b0000111, condition, value, 0b101, rd, 0b0110011);
}
void Assembler::CZERO_NEZ(GPR rd, GPR value, GPR condition) noexcept {
EmitRType(m_buffer, 0b0000111, condition, value, 0b111, rd, 0b0110011);
}
// Zicsr Extension Instructions
void Assembler::CSRRC(GPR rd, CSR csr, GPR rs) noexcept {
EmitIType(m_buffer, static_cast<uint32_t>(csr), rs, 0b011, rd, 0b1110011);
}
void Assembler::CSRRCI(GPR rd, CSR csr, uint32_t imm) noexcept {
BISCUIT_ASSERT(imm <= 0x1F);
EmitIType(m_buffer, static_cast<uint32_t>(csr), GPR{imm & 0x1F}, 0b111, rd, 0b1110011);
}
void Assembler::CSRRS(GPR rd, CSR csr, GPR rs) noexcept {
EmitIType(m_buffer, static_cast<uint32_t>(csr), rs, 0b010, rd, 0b1110011);
}
void Assembler::CSRRSI(GPR rd, CSR csr, uint32_t imm) noexcept {
BISCUIT_ASSERT(imm <= 0x1F);
EmitIType(m_buffer, static_cast<uint32_t>(csr), GPR{imm & 0x1F}, 0b110, rd, 0b1110011);
}
void Assembler::CSRRW(GPR rd, CSR csr, GPR rs) noexcept {
EmitIType(m_buffer, static_cast<uint32_t>(csr), rs, 0b001, rd, 0b1110011);
}
void Assembler::CSRRWI(GPR rd, CSR csr, uint32_t imm) noexcept {
BISCUIT_ASSERT(imm <= 0x1F);
EmitIType(m_buffer, static_cast<uint32_t>(csr), GPR{imm & 0x1F}, 0b101, rd, 0b1110011);
}
void Assembler::CSRR(GPR rd, CSR csr) noexcept {
CSRRS(rd, csr, x0);
}
void Assembler::CSWR(CSR csr, GPR rs) noexcept {
CSRRW(x0, csr, rs);
}
void Assembler::CSRS(CSR csr, GPR rs) noexcept {
CSRRS(x0, csr, rs);
}
void Assembler::CSRC(CSR csr, GPR rs) noexcept {
CSRRC(x0, csr, rs);
}
void Assembler::CSRCI(CSR csr, uint32_t imm) noexcept {
CSRRCI(x0, csr, imm);
}
void Assembler::CSRSI(CSR csr, uint32_t imm) noexcept {
CSRRSI(x0, csr, imm);
}
void Assembler::CSRWI(CSR csr, uint32_t imm) noexcept {
CSRRWI(x0, csr, imm);
}
void Assembler::FRCSR(GPR rd) noexcept {
CSRRS(rd, CSR::FCSR, x0);
}
void Assembler::FSCSR(GPR rd, GPR rs) noexcept {
CSRRW(rd, CSR::FCSR, rs);
}
void Assembler::FSCSR(GPR rs) noexcept {
CSRRW(x0, CSR::FCSR, rs);
}
void Assembler::FRRM(GPR rd) noexcept {
CSRRS(rd, CSR::FRM, x0);
}
void Assembler::FSRM(GPR rd, GPR rs) noexcept {
CSRRW(rd, CSR::FRM, rs);
}
void Assembler::FSRM(GPR rs) noexcept {
CSRRW(x0, CSR::FRM, rs);
}
void Assembler::FSRMI(GPR rd, uint32_t imm) noexcept {
CSRRWI(rd, CSR::FRM, imm);
}
void Assembler::FSRMI(uint32_t imm) noexcept {
CSRRWI(x0, CSR::FRM, imm);
}
void Assembler::FRFLAGS(GPR rd) noexcept {
CSRRS(rd, CSR::FFlags, x0);
}
void Assembler::FSFLAGS(GPR rd, GPR rs) noexcept {
CSRRW(rd, CSR::FFlags, rs);
}
void Assembler::FSFLAGS(GPR rs) noexcept {
CSRRW(x0, CSR::FFlags, rs);
}
void Assembler::FSFLAGSI(GPR rd, uint32_t imm) noexcept {
CSRRWI(rd, CSR::FFlags, imm);
}
void Assembler::FSFLAGSI(uint32_t imm) noexcept {
CSRRWI(x0, CSR::FFlags, imm);
}
void Assembler::RDCYCLE(GPR rd) noexcept {
CSRRS(rd, CSR::Cycle, x0);
}
void Assembler::RDCYCLEH(GPR rd) noexcept {
CSRRS(rd, CSR::CycleH, x0);
}
void Assembler::RDINSTRET(GPR rd) noexcept {
CSRRS(rd, CSR::InstRet, x0);
}
void Assembler::RDINSTRETH(GPR rd) noexcept {
CSRRS(rd, CSR::InstRetH, x0);
}
void Assembler::RDTIME(GPR rd) noexcept {
CSRRS(rd, CSR::Time, x0);
}
void Assembler::RDTIMEH(GPR rd) noexcept {
CSRRS(rd, CSR::TimeH, x0);
}
// Zihintntl Extension Instructions
void Assembler::C_NTL_ALL() noexcept {
C_ADD(x0, x5);
}
void Assembler::C_NTL_S1() noexcept {
C_ADD(x0, x4);
}
void Assembler::C_NTL_P1() noexcept {
C_ADD(x0, x2);
}
void Assembler::C_NTL_PALL() noexcept {
C_ADD(x0, x3);
}
void Assembler::NTL_ALL() noexcept {
ADD(x0, x0, x5);
}
void Assembler::NTL_S1() noexcept {
ADD(x0, x0, x4);
}
void Assembler::NTL_P1() noexcept {
ADD(x0, x0, x2);
}
void Assembler::NTL_PALL() noexcept {
ADD(x0, x0, x3);
}
// RV32M Extension Instructions
void Assembler::DIV(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b100, rd, 0b0110011);
}
void Assembler::DIVU(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b101, rd, 0b0110011);
}
void Assembler::MUL(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b000, rd, 0b0110011);
}
void Assembler::MULH(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b001, rd, 0b0110011);
}
void Assembler::MULHSU(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b010, rd, 0b0110011);
}
void Assembler::MULHU(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b011, rd, 0b0110011);
}
void Assembler::REM(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b110, rd, 0b0110011);
}
void Assembler::REMU(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b111, rd, 0b0110011);
}
// RV64M Extension Instructions
void Assembler::DIVW(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b100, rd, 0b0111011);
}
void Assembler::DIVUW(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b101, rd, 0b0111011);
}
void Assembler::MULW(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b000, rd, 0b0111011);
}
void Assembler::REMW(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b110, rd, 0b0111011);
}
void Assembler::REMUW(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000001, rs2, rs1, 0b111, rd, 0b0111011);
}
// RV32A Extension Instructions
void Assembler::AMOADD_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b00000, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOAND_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b01100, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOMAX_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b10100, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOMAXU_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b11100, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOMIN_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b10000, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOMINU_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b11000, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOOR_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b01000, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOSWAP_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b00001, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::AMOXOR_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b00100, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
void Assembler::LR_W(Ordering ordering, GPR rd, GPR rs) noexcept {
EmitAtomic(m_buffer, 0b00010, ordering, x0, rs, 0b010, rd, 0b0101111);
}
void Assembler::SC_W(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
EmitAtomic(m_buffer, 0b00011, ordering, rs2, rs1, 0b010, rd, 0b0101111);
}
// RV64A Extension Instructions
void Assembler::AMOADD_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b00000, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOAND_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b01100, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOMAX_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b10100, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOMAXU_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b11100, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOMIN_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b10000, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOMINU_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b11000, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOOR_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b01000, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOSWAP_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b00001, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::AMOXOR_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b00100, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
void Assembler::LR_D(Ordering ordering, GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b00010, ordering, x0, rs, 0b011, rd, 0b0101111);
}
void Assembler::SC_D(Ordering ordering, GPR rd, GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitAtomic(m_buffer, 0b00011, ordering, rs2, rs1, 0b011, rd, 0b0101111);
}
// RVB Extension Instructions
void Assembler::ADDUW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0000100, rs2, rs1, 0b000, rd, 0b0111011);
}
void Assembler::ANDN(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0100000, rs2, rs1, 0b111, rd, 0b0110011);
}
void Assembler::BCLR(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0100100, rs2, rs1, 0b001, rd, 0b0110011);
}
void Assembler::BCLRI(GPR rd, GPR rs, uint32_t bit) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(bit <= 31);
} else {
BISCUIT_ASSERT(bit <= 63);
}
const auto imm = (0b010010U << 6) | bit;
EmitIType(m_buffer, imm, rs, 0b001, rd, 0b0010011);
}
void Assembler::BEXT(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0100100, rs2, rs1, 0b101, rd, 0b0110011);
}
void Assembler::BEXTI(GPR rd, GPR rs, uint32_t bit) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(bit <= 31);
} else {
BISCUIT_ASSERT(bit <= 63);
}
const auto imm = (0b010010U << 6) | bit;
EmitIType(m_buffer, imm, rs, 0b101, rd, 0b0010011);
}
void Assembler::BINV(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0110100, rs2, rs1, 0b001, rd, 0b0110011);
}
void Assembler::BINVI(GPR rd, GPR rs, uint32_t bit) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(bit <= 31);
} else {
BISCUIT_ASSERT(bit <= 63);
}
const auto imm = (0b011010U << 6) | bit;
EmitIType(m_buffer, imm, rs, 0b001, rd, 0b0010011);
}
void Assembler::BREV8(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b011010000111, rs, 0b101, rd, 0b0010011);
}
void Assembler::BSET(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010100, rs2, rs1, 0b001, rd, 0b0110011);
}
void Assembler::BSETI(GPR rd, GPR rs, uint32_t bit) noexcept {
if (IsRV32(m_features)) {
BISCUIT_ASSERT(bit <= 31);
} else {
BISCUIT_ASSERT(bit <= 63);
}
const auto imm = (0b001010U << 6) | bit;
EmitIType(m_buffer, imm, rs, 0b001, rd, 0b0110011);
}
void Assembler::CLMUL(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b001, rd, 0b0110011);
}
void Assembler::CLMULH(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b011, rd, 0b0110011);
}
void Assembler::CLMULR(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b010, rd, 0b0110011);
}
void Assembler::CLZ(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b011000000000, rs, 0b001, rd, 0b0010011);
}
void Assembler::CLZW(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitIType(m_buffer, 0b011000000000, rs, 0b001, rd, 0b0011011);
}
void Assembler::CPOP(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b011000000010, rs, 0b001, rd, 0b0010011);
}
void Assembler::CPOPW(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitIType(m_buffer, 0b011000000010, rs, 0b001, rd, 0b0011011);
}
void Assembler::CTZ(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b011000000001, rs, 0b001, rd, 0b0010011);
}
void Assembler::CTZW(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitIType(m_buffer, 0b011000000001, rs, 0b001, rd, 0b0011011);
}
void Assembler::MAX(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b110, rd, 0b0110011);
}
void Assembler::MAXU(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b111, rd, 0b0110011);
}
void Assembler::MIN(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b100, rd, 0b0110011);
}
void Assembler::MINU(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000101, rs2, rs1, 0b101, rd, 0b0110011);
}
void Assembler::ORCB(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b001010000111, rs, 0b101, rd, 0b0010011);
}
void Assembler::ORN(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0100000, rs2, rs1, 0b110, rd, 0b0110011);
}
void Assembler::PACK(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000100, rs2, rs1, 0b100, rd, 0b0110011);
}
void Assembler::PACKH(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0000100, rs2, rs1, 0b111, rd, 0b0110011);
}
void Assembler::PACKW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0000100, rs2, rs1, 0b100, rd, 0b0111011);
}
void Assembler::REV8(GPR rd, GPR rs) noexcept {
if (IsRV32(m_features)) {
EmitIType(m_buffer, 0b011010011000, rs, 0b101, rd, 0b0010011);
} else {
EmitIType(m_buffer, 0b011010111000, rs, 0b101, rd, 0b0010011);
}
}
void Assembler::ROL(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0110000, rs2, rs1, 0b001, rd, 0b0110011);
}
void Assembler::ROLW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0110000, rs2, rs1, 0b001, rd, 0b0111011);
}
void Assembler::ROR(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0110000, rs2, rs1, 0b101, rd, 0b0110011);
}
void Assembler::RORI(GPR rd, GPR rs, uint32_t rotate_amount) noexcept {
BISCUIT_ASSERT(rotate_amount <= 63);
const auto imm = (0b011000U << 6) | rotate_amount;
EmitIType(m_buffer, imm, rs, 0b101, rd, 0b0010011);
}
void Assembler::RORIW(GPR rd, GPR rs, uint32_t rotate_amount) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(rotate_amount <= 63);
const auto imm = (0b011000U << 6) | rotate_amount;
EmitIType(m_buffer, imm, rs, 0b101, rd, 0b0011011);
}
void Assembler::RORW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0110000, rs2, rs1, 0b101, rd, 0b0111011);
}
void Assembler::SEXTB(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b011000000100, rs, 0b001, rd, 0b0010011);
}
void Assembler::SEXTH(GPR rd, GPR rs) noexcept {
EmitIType(m_buffer, 0b011000000101, rs, 0b001, rd, 0b0010011);
}
void Assembler::SH1ADD(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010000, rs2, rs1, 0b010, rd, 0b0110011);
}
void Assembler::SH1ADDUW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0010000, rs2, rs1, 0b010, rd, 0b0111011);
}
void Assembler::SH2ADD(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010000, rs2, rs1, 0b100, rd, 0b0110011);
}
void Assembler::SH2ADDUW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0010000, rs2, rs1, 0b100, rd, 0b0111011);
}
void Assembler::SH3ADD(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010000, rs2, rs1, 0b110, rd, 0b0110011);
}
void Assembler::SH3ADDUW(GPR rd, GPR rs1, GPR rs2) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0010000, rs2, rs1, 0b110, rd, 0b0111011);
}
void Assembler::SLLIUW(GPR rd, GPR rs, uint32_t shift_amount) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
BISCUIT_ASSERT(shift_amount <= 63);
const auto imm = (0b000010U << 6) | shift_amount;
EmitIType(m_buffer, imm, rs, 0b001, rd, 0b0011011);
}
void Assembler::UNZIP(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV32(m_features));
EmitIType(m_buffer, 0b000010011111, rs, 0b101, rd, 0b0010011);
}
void Assembler::XNOR(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0100000, rs2, rs1, 0b100, rd, 0b0110011);
}
void Assembler::XPERM4(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010100, rs2, rs1, 0b010, rd, 0b0110011);
}
void Assembler::XPERM8(GPR rd, GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010100, rs2, rs1, 0b100, rd, 0b0110011);
}
void Assembler::ZEXTH(GPR rd, GPR rs) noexcept {
if (IsRV32(m_features)) {
EmitIType(m_buffer, 0b000010000000, rs, 0b100, rd, 0b0110011);
} else {
EmitIType(m_buffer, 0b000010000000, rs, 0b100, rd, 0b0111011);
}
}
void Assembler::ZEXTW(GPR rd, GPR rs) noexcept {
ADDUW(rd, rs, x0);
}
void Assembler::ZIP(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV32(m_features));
EmitIType(m_buffer, 0b000010011110, rs, 0b001, rd, 0b0010011);
}
// Cache Management Operation Extension Instructions
void Assembler::CBO_CLEAN(GPR rs) noexcept {
EmitRType(m_buffer, 0b0000000, x1, rs, 0b010, x0, 0b0001111);
}
void Assembler::CBO_FLUSH(GPR rs) noexcept {
EmitRType(m_buffer, 0b0000000, x2, rs, 0b010, x0, 0b0001111);
}
void Assembler::CBO_INVAL(GPR rs) noexcept {
EmitRType(m_buffer, 0b0000000, x0, rs, 0b010, x0, 0b0001111);
}
void Assembler::CBO_ZERO(GPR rs) noexcept {
EmitRType(m_buffer, 0b0000000, x4, rs, 0b010, x0, 0b0001111);
}
void Assembler::PREFETCH_I(GPR rs, int32_t offset) noexcept {
// Offset must be able to fit in a 12-bit signed immediate and be
// cleanly divisible by 32 since the bottom 5 bits are encoded as zero.
BISCUIT_ASSERT(IsValidSigned12BitImm(offset));
BISCUIT_ASSERT(offset % 32 == 0);
EmitIType(m_buffer, static_cast<uint32_t>(offset), rs, 0b110, x0, 0b0010011);
}
void Assembler::PREFETCH_R(GPR rs, int32_t offset) noexcept {
// Offset must be able to fit in a 12-bit signed immediate and be
// cleanly divisible by 32 since the bottom 5 bits are encoded as zero.
BISCUIT_ASSERT(IsValidSigned12BitImm(offset));
BISCUIT_ASSERT(offset % 32 == 0);
EmitIType(m_buffer, static_cast<uint32_t>(offset) | 0b01, rs, 0b110, x0, 0b0010011);
}
void Assembler::PREFETCH_W(GPR rs, int32_t offset) noexcept {
// Offset must be able to fit in a 12-bit signed immediate and be
// cleanly divisible by 32 since the bottom 5 bits are encoded as zero.
BISCUIT_ASSERT(IsValidSigned12BitImm(offset));
BISCUIT_ASSERT(offset % 32 == 0);
EmitIType(m_buffer, static_cast<uint32_t>(offset) | 0b11, rs, 0b110, x0, 0b0010011);
}
// Privileged Instructions
void Assembler::HFENCE_GVMA(GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0110001, rs2, rs1, 0b000, x0, 0b1110011);
}
void Assembler::HFENCE_VVMA(GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010001, rs2, rs1, 0b000, x0, 0b1110011);
}
void Assembler::HINVAL_GVMA(GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0110011, rs2, rs1, 0b000, x0, 0b1110011);
}
void Assembler::HINVAL_VVMA(GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0010011, rs2, rs1, 0b000, x0, 0b1110011);
}
void Assembler::HLV_B(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110000, x0, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLV_BU(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110000, x1, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLV_D(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0110110, x0, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLV_H(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110010, x0, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLV_HU(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110010, x1, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLV_W(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110100, x0, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLV_WU(GPR rd, GPR rs) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0110100, x1, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLVX_HU(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110010, x3, rs, 0b100, rd, 0b1110011);
}
void Assembler::HLVX_WU(GPR rd, GPR rs) noexcept {
EmitRType(m_buffer, 0b0110100, x3, rs, 0b100, rd, 0b1110011);
}
void Assembler::HSV_B(GPR rs2, GPR rs1) noexcept {
EmitRType(m_buffer, 0b0110001, rs2, rs1, 0b100, x0, 0b1110011);
}
void Assembler::HSV_D(GPR rs2, GPR rs1) noexcept {
BISCUIT_ASSERT(IsRV64(m_features));
EmitRType(m_buffer, 0b0110111, rs2, rs1, 0b100, x0, 0b1110011);
}
void Assembler::HSV_H(GPR rs2, GPR rs1) noexcept {
EmitRType(m_buffer, 0b0110011, rs2, rs1, 0b100, x0, 0b1110011);
}
void Assembler::HSV_W(GPR rs2, GPR rs1) noexcept {
EmitRType(m_buffer, 0b0110101, rs2, rs1, 0b100, x0, 0b1110011);
}
void Assembler::MRET() noexcept {
m_buffer.Emit32(0x30200073);
}
void Assembler::SFENCE_INVAL_IR() noexcept {
m_buffer.Emit32(0x18100073U);
}
void Assembler::SFENCE_VMA(GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0001001, rs2, rs1, 0b000, x0, 0b1110011);
}
void Assembler::SFENCE_W_INVAL() noexcept {
m_buffer.Emit32(0x18000073U);
}
void Assembler::SINVAL_VMA(GPR rs1, GPR rs2) noexcept {
EmitRType(m_buffer, 0b0001011, rs2, rs1, 0b000, x0, 0b1110011);
}
void Assembler::SRET() noexcept {
m_buffer.Emit32(0x10200073);
}
void Assembler::URET() noexcept {
m_buffer.Emit32(0x00200073);
}
void Assembler::WFI() noexcept {
m_buffer.Emit32(0x10500073);
}
void Assembler::BindToOffset(Label* label, Label::LocationOffset offset) {
BISCUIT_ASSERT(label != nullptr);
BISCUIT_ASSERT(offset >= 0 && offset <= m_buffer.GetCursorOffset());
label->Bind(offset);
ResolveLabelOffsets(label);
label->ClearOffsets();
}
ptrdiff_t Assembler::LinkAndGetOffset(Label* label) {
BISCUIT_ASSERT(label != nullptr);
// If we have a bound label, then it's straightforward to calculate
// the offsets.
if (label->IsBound()) {
const auto cursor_address = m_buffer.GetCursorAddress();
const auto label_offset = m_buffer.GetOffsetAddress(*label->GetLocation());
return static_cast<ptrdiff_t>(label_offset - cursor_address);
}
// If we don't have a bound location, we return an offset of zero.
// While the emitter will emit a bogus branch instruction initially,
// the offset will be patched over once the label has been properly
// bound to a location.
label->AddOffset(m_buffer.GetCursorOffset());
return 0;
}
void Assembler::ResolveLabelOffsets(Label* label) {
// Conditional branch instructions make use of the B-type immediate encoding for offsets.
const auto is_b_type = [](uint32_t instruction) {
return (instruction & 0x7F) == 0b1100011;
};
// JAL makes use of the J-type immediate encoding for offsets.
const auto is_j_type = [](uint32_t instruction) {
return (instruction & 0x7F) == 0b1101111;
};
// C.BEQZ and C.BNEZ make use of this encoding type.
const auto is_cb_type = [](uint32_t instruction) {
const auto op = instruction & 0b11;
const auto funct3 = instruction & 0xE000;
return op == 0b01 && funct3 >= 0xC000;
};
// C.JAL and C.J make use of this encoding type.
const auto is_cj_type = [](uint32_t instruction) {
const auto op = instruction & 0b11;
const auto funct3 = instruction & 0xE000;
return op == 0b01 && (funct3 == 0x2000 || funct3 == 0xA000);
};
// If we know an instruction is a compressed branch, then it's a 16-bit instruction
// Otherwise it's a regular-sized 32-bit instruction.
const auto determine_inst_size = [&](uint32_t instruction) -> size_t {
if (is_cj_type(instruction) || is_cb_type(instruction)) {
return 2;
} else {
return 4;
}
};
const auto label_location = *label->GetLocation();
for (const auto offset : label->m_offsets) {
const auto address = m_buffer.GetOffsetAddress(offset);
auto* const ptr = reinterpret_cast<uint8_t*>(address);
const auto inst_size = determine_inst_size(uint32_t{*ptr} | (uint32_t{*(ptr + 1)} << 8));
uint32_t instruction = 0;
std::memcpy(&instruction, ptr, inst_size);
// Given all branch instructions we need to patch have 0 encoded as
// their branch offset, we don't need to worry about any masking work.
//
// It's enough to verify that the immediate is going to be valid
// and then OR it into the instruction.
const auto encoded_offset = label_location - offset;
if (inst_size == sizeof(uint32_t)) {
if (is_b_type(instruction)) {
BISCUIT_ASSERT(IsValidBTypeImm(encoded_offset));
instruction |= TransformToBTypeImm(static_cast<uint32_t>(encoded_offset));
} else if (is_j_type(instruction)) {
BISCUIT_ASSERT(IsValidJTypeImm(encoded_offset));
instruction |= TransformToJTypeImm(static_cast<uint32_t>(encoded_offset));
}
} else {
if (is_cb_type(instruction)) {
BISCUIT_ASSERT(IsValidCBTypeImm(encoded_offset));
instruction |= TransformToCBTypeImm(static_cast<uint32_t>(encoded_offset));
} else if (is_cj_type(instruction)) {
BISCUIT_ASSERT(IsValidCJTypeImm(encoded_offset));
instruction |= TransformToCJTypeImm(static_cast<uint32_t>(encoded_offset));
}
}
std::memcpy(ptr, &instruction, inst_size);
}
}
} // namespace biscuit