dynarmic/src/frontend/A32/translate/impl/asimd_two_regs_misc.cpp
2020-06-21 12:34:55 +01:00

546 lines
16 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2020 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include "common/bit_util.h"
#include <array>
#include "frontend/A32/translate/impl/translate_arm.h"
namespace Dynarmic::A32 {
namespace {
enum class Comparison {
EQ,
GE,
GT,
LE,
LT,
};
bool CompareWithZero(ArmTranslatorVisitor& v, bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm, Comparison type) {
if (sz == 0b11 || (F && sz != 0b10)) {
return v.UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [&] {
const auto reg_m = v.ir.GetVector(m);
const auto zero = v.ir.ZeroVector();
if (F) {
switch (type) {
case Comparison::EQ:
return v.ir.FPVectorEqual(32, reg_m, zero, false);
case Comparison::GE:
return v.ir.FPVectorGreaterEqual(32, reg_m, zero, false);
case Comparison::GT:
return v.ir.FPVectorGreater(32, reg_m, zero, false);
case Comparison::LE:
return v.ir.FPVectorGreaterEqual(32, zero, reg_m, false);
case Comparison::LT:
return v.ir.FPVectorGreater(32, zero, reg_m, false);
}
return IR::U128{};
} else {
static constexpr std::array fns{
&IREmitter::VectorEqual,
&IREmitter::VectorGreaterEqualSigned,
&IREmitter::VectorGreaterSigned,
&IREmitter::VectorLessEqualSigned,
&IREmitter::VectorLessSigned,
};
const size_t esize = 8U << sz;
return (v.ir.*fns[static_cast<size_t>(type)])(esize, reg_m, zero);
}
}();
v.ir.SetVector(d, result);
return true;
}
enum class AccumulateBehavior {
None,
Accumulate,
};
bool PairedAddOperation(ArmTranslatorVisitor& v, bool D, size_t sz, size_t Vd, bool op, bool Q, bool M, size_t Vm,
AccumulateBehavior accumulate) {
if (sz == 0b11) {
return v.UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = v.ir.GetVector(m);
const auto result = [&] {
const auto tmp = op ? v.ir.VectorPairedAddUnsignedWiden(esize, reg_m)
: v.ir.VectorPairedAddSignedWiden(esize, reg_m);
if (accumulate == AccumulateBehavior::Accumulate) {
const auto reg_d = v.ir.GetVector(d);
return v.ir.VectorAdd(esize * 2, reg_d, tmp);
}
return tmp;
}();
v.ir.SetVector(d, result);
return true;
}
} // Anonymous namespace
bool ArmTranslatorVisitor::asimd_VREV(bool D, size_t sz, size_t Vd, size_t op, bool Q, bool M, size_t Vm) {
if (op + sz >= 3) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, m, op, sz] {
const auto reg_m = ir.GetVector(m);
const size_t esize = 16U << sz;
const auto shift = static_cast<u8>(8U << sz);
// 64-bit regions
if (op == 0b00) {
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, shift),
ir.VectorLogicalShiftLeft(esize, reg_m, shift));
switch (sz) {
case 0: // 8-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b00011011);
result = ir.VectorShuffleHighHalfwords(result, 0b00011011);
break;
case 1: // 16-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b01001110);
result = ir.VectorShuffleHighHalfwords(result, 0b01001110);
break;
}
return result;
}
// 32-bit regions
if (op == 0b01) {
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, shift),
ir.VectorLogicalShiftLeft(esize, reg_m, shift));
// If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword
// e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially
// changing [3, 2, 1, 0] to [2, 3, 0, 1]
if (sz == 0) {
result = ir.VectorShuffleLowHalfwords(result, 0b10110001);
result = ir.VectorShuffleHighHalfwords(result, 0b10110001);
}
return result;
}
// 16-bit regions
return ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, 8),
ir.VectorLogicalShiftLeft(esize, reg_m, 8));
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VPADDL(bool D, size_t sz, size_t Vd, bool op, bool Q, bool M, size_t Vm) {
return PairedAddOperation(*this, D, sz, Vd, op, Q, M, Vm, AccumulateBehavior::None);
}
bool ArmTranslatorVisitor::asimd_VCLS(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, m, sz] {
const auto reg_m = ir.GetVector(m);
const size_t esize = 8U << sz;
const auto shifted = ir.VectorArithmeticShiftRight(esize, reg_m, static_cast<u8>(esize));
const auto xored = ir.VectorEor(reg_m, shifted);
const auto clz = ir.VectorCountLeadingZeros(esize, xored);
return ir.VectorSub(esize, clz, ir.VectorBroadcast(esize, I(esize, 1)));
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCLZ(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, m, sz] {
const auto reg_m = ir.GetVector(m);
const size_t esize = 8U << sz;
return ir.VectorCountLeadingZeros(esize, reg_m);
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCNT(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz != 0b00) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = ir.VectorPopulationCount(reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VMVN_reg(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz != 0b00) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = ir.VectorNot(reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VPADAL(bool D, size_t sz, size_t Vd, bool op, bool Q, bool M, size_t Vm) {
return PairedAddOperation(*this, D, sz, Vd, op, Q, M, Vm, AccumulateBehavior::Accumulate);
}
bool ArmTranslatorVisitor::asimd_VQABS(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = ir.VectorSignedSaturatedAbs(esize, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VQNEG(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = ir.VectorSignedSaturatedNeg(esize, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCGT_zero(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
return CompareWithZero(*this, D, sz, Vd, F, Q, M, Vm, Comparison::GT);
}
bool ArmTranslatorVisitor::asimd_VCGE_zero(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
return CompareWithZero(*this, D, sz, Vd, F, Q, M, Vm, Comparison::GE);
}
bool ArmTranslatorVisitor::asimd_VCEQ_zero(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
return CompareWithZero(*this, D, sz, Vd, F, Q, M, Vm, Comparison::EQ);
}
bool ArmTranslatorVisitor::asimd_VCLE_zero(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
return CompareWithZero(*this, D, sz, Vd, F, Q, M, Vm, Comparison::LE);
}
bool ArmTranslatorVisitor::asimd_VCLT_zero(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
return CompareWithZero(*this, D, sz, Vd, F, Q, M, Vm, Comparison::LT);
}
bool ArmTranslatorVisitor::asimd_VABS(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (F && sz != 0b10)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, F, m, sz] {
const auto reg_m = ir.GetVector(m);
if (F) {
return ir.FPVectorAbs(32, reg_m);
}
const size_t esize = 8U << sz;
return ir.VectorAbs(esize, reg_m);
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VNEG(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (F && sz != 0b10)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, F, m, sz] {
const auto reg_m = ir.GetVector(m);
if (F) {
return ir.FPVectorNeg(32, reg_m);
}
const size_t esize = 8U << sz;
return ir.VectorSub(esize, ir.ZeroVector(), reg_m);
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VSWP(bool D, size_t Vd, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
// Swapping the same register results in the same contents.
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
if (d == m) {
return true;
}
if (Q) {
const auto reg_d = ir.GetVector(d);
const auto reg_m = ir.GetVector(m);
ir.SetVector(m, reg_d);
ir.SetVector(d, reg_m);
} else {
const auto reg_d = ir.GetExtendedRegister(d);
const auto reg_m = ir.GetExtendedRegister(m);
ir.SetExtendedRegister(m, reg_d);
ir.SetExtendedRegister(d, reg_m);
}
return true;
}
bool ArmTranslatorVisitor::asimd_VTRN(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
if (d == m) {
return UnpredictableInstruction();
}
const auto reg_d = ir.GetVector(d);
const auto reg_m = ir.GetVector(m);
const auto result_d = ir.VectorTranspose(esize, reg_d, reg_m, false);
const auto result_m = ir.VectorTranspose(esize, reg_d, reg_m, true);
ir.SetVector(d, result_d);
ir.SetVector(m, result_m);
return true;
}
bool ArmTranslatorVisitor::asimd_VUZP(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (!Q && sz == 0b10)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
if (d == m) {
return UnpredictableInstruction();
}
const auto reg_d = ir.GetVector(d);
const auto reg_m = ir.GetVector(m);
auto result_d = ir.VectorDeinterleaveEven(esize, reg_d, reg_m);
auto result_m = ir.VectorDeinterleaveOdd(esize, reg_d, reg_m);
if (!Q) {
result_d = ir.VectorShuffleWords(result_d, 0b11011000);
result_m = ir.VectorShuffleWords(result_m, 0b11011000);
}
ir.SetVector(d, result_d);
ir.SetVector(m, result_m);
return true;
}
bool ArmTranslatorVisitor::asimd_VZIP(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (!Q && sz == 0b10)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
if (d == m) {
return UnpredictableInstruction();
}
const auto reg_d = ir.GetVector(d);
const auto reg_m = ir.GetVector(m);
if (Q){
const auto result_d = ir.VectorInterleaveLower(esize, reg_d, reg_m);
const auto result_m = ir.VectorInterleaveUpper(esize, reg_d, reg_m);
ir.SetVector(d, result_d);
ir.SetVector(m, result_m);
} else {
const auto result = ir.VectorInterleaveLower(esize, reg_d, reg_m);
ir.SetExtendedRegister(d, ir.VectorGetElement(64, result, 0));
ir.SetExtendedRegister(m, ir.VectorGetElement(64, result, 1));
}
return true;
}
bool ArmTranslatorVisitor::asimd_VRECPE(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b00 || sz == 0b11) {
return UndefinedInstruction();
}
if (!F && sz == 0b01) {
// TODO: Implement 16-bit VectorUnsignedRecipEstimate
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = F ? ir.FPVectorRecipEstimate(esize, reg_m, false)
: ir.VectorUnsignedRecipEstimate(reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VRSQRTE(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b00 || sz == 0b11) {
return UndefinedInstruction();
}
if (!F && sz == 0b01) {
// TODO: Implement 16-bit VectorUnsignedRecipEstimate
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = F ? ir.FPVectorRSqrtEstimate(esize, reg_m, false)
: ir.VectorUnsignedRecipSqrtEstimate(reg_m);
ir.SetVector(d, result);
return true;
}
} // namespace Dynarmic::A32