dynarmic/src/frontend/A64/translate/impl/floating_point_conversion_integer.cpp
Lioncash 5ebf496d4e translate: Deduplicate GetDataSize() functions
Avoids defining the same function multiple times in different files.
2020-04-22 20:46:22 +01:00

221 lines
7.2 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <boost/optional.hpp>
#include "common/fp/rounding_mode.h"
#include "frontend/A64/translate/impl/impl.h"
namespace Dynarmic::A64 {
bool TranslatorVisitor::SCVTF_float_int(bool sf, Imm<2> type, Reg Rn, Vec Vd) {
const size_t intsize = sf ? 64 : 32;
const auto fltsize = FPGetDataSize(type);
if (!fltsize || *fltsize == 16) {
return UnallocatedEncoding();
}
const IR::U32U64 intval = X(intsize, Rn);
IR::U32U64 fltval;
if (intsize == 32 && *fltsize == 32) {
fltval = ir.FPS32ToSingle(intval, false, true);
} else if (intsize == 32 && *fltsize == 64) {
fltval = ir.FPS32ToDouble(intval, false, true);
} else if (intsize == 64 && *fltsize == 32) {
fltval = ir.FPS64ToSingle(intval, false, true);
} else if (intsize == 64 && *fltsize == 64) {
fltval = ir.FPS64ToDouble(intval, false, true);
} else {
UNREACHABLE();
}
V_scalar(*fltsize, Vd, fltval);
return true;
}
bool TranslatorVisitor::UCVTF_float_int(bool sf, Imm<2> type, Reg Rn, Vec Vd) {
const size_t intsize = sf ? 64 : 32;
const auto fltsize = FPGetDataSize(type);
if (!fltsize || *fltsize == 16) {
return UnallocatedEncoding();
}
const IR::U32U64 intval = X(intsize, Rn);
IR::U32U64 fltval;
if (intsize == 32 && *fltsize == 32) {
fltval = ir.FPU32ToSingle(intval, false, true);
} else if (intsize == 32 && *fltsize == 64) {
fltval = ir.FPU32ToDouble(intval, false, true);
} else if (intsize == 64 && *fltsize == 32) {
fltval = ir.FPU64ToSingle(intval, false, true);
} else if (intsize == 64 && *fltsize == 64) {
fltval = ir.FPU64ToDouble(intval, false, true);
} else {
UNREACHABLE();
}
V_scalar(*fltsize, Vd, fltval);
return true;
}
bool TranslatorVisitor::FMOV_float_gen(bool sf, Imm<2> type, Imm<1> rmode_0, Imm<1> opc_0, size_t n, size_t d) {
// NOTE:
// opcode<2:1> == 0b11
// rmode<1> == 0b0
const size_t intsize = sf ? 64 : 32;
size_t fltsize;
switch (type.ZeroExtend()) {
case 0b00:
fltsize = 32;
break;
case 0b01:
fltsize = 64;
break;
case 0b10:
if (rmode_0 != 1) {
return UnallocatedEncoding();
}
fltsize = 128;
break;
default:
case 0b11:
fltsize = 16;
return UnallocatedEncoding();
}
bool integer_to_float;
size_t part;
switch (rmode_0.ZeroExtend()) {
case 0b0:
if (fltsize != 16 && fltsize != intsize) {
return UnallocatedEncoding();
}
integer_to_float = opc_0 == 0b1;
part = 0;
break;
default:
case 0b1:
if (intsize != 64 || fltsize != 128) {
return UnallocatedEncoding();
}
integer_to_float = opc_0 == 0b1;
part = 1;
fltsize = 64;
break;
}
if (integer_to_float) {
IR::U32U64 intval = X(intsize, static_cast<Reg>(n));
Vpart_scalar(fltsize, static_cast<Vec>(d), part, intval);
} else {
IR::UAny fltval = Vpart_scalar(fltsize, static_cast<Vec>(n), part);
IR::U32U64 intval = ZeroExtend(fltval, intsize);
X(intsize, static_cast<Reg>(d), intval);
}
return true;
}
static bool FloaingPointConvertSignedInteger(TranslatorVisitor& v, bool sf, Imm<2> type, Vec Vn, Reg Rd, FP::RoundingMode rounding_mode) {
const size_t intsize = sf ? 64 : 32;
const auto fltsize = FPGetDataSize(type);
if (!fltsize || *fltsize == 16) {
return v.UnallocatedEncoding();
}
const IR::U32U64 fltval = v.V_scalar(*fltsize, Vn);
IR::U32U64 intval;
if (intsize == 32 && *fltsize == 32) {
intval = v.ir.FPSingleToFixedS32(fltval, 0, rounding_mode);
} else if (intsize == 32 && *fltsize == 64) {
intval = v.ir.FPDoubleToFixedS32(fltval, 0, rounding_mode);
} else if (intsize == 64 && *fltsize == 32) {
intval = v.ir.FPSingleToFixedS64(fltval, 0, rounding_mode);
} else if (intsize == 64 && *fltsize == 64) {
intval = v.ir.FPDoubleToFixedS64(fltval, 0, rounding_mode);
} else {
UNREACHABLE();
}
v.X(intsize, Rd, intval);
return true;
}
static bool FloaingPointConvertUnsignedInteger(TranslatorVisitor& v, bool sf, Imm<2> type, Vec Vn, Reg Rd, FP::RoundingMode rounding_mode) {
const size_t intsize = sf ? 64 : 32;
const auto fltsize = FPGetDataSize(type);
if (!fltsize || *fltsize == 16) {
return v.UnallocatedEncoding();
}
const IR::U32U64 fltval = v.V_scalar(*fltsize, Vn);
IR::U32U64 intval;
if (intsize == 32 && *fltsize == 32) {
intval = v.ir.FPSingleToFixedU32(fltval, 0, rounding_mode);
} else if (intsize == 32 && *fltsize == 64) {
intval = v.ir.FPDoubleToFixedU32(fltval, 0, rounding_mode);
} else if (intsize == 64 && *fltsize == 32) {
intval = v.ir.FPSingleToFixedU64(fltval, 0, rounding_mode);
} else if (intsize == 64 && *fltsize == 64) {
intval = v.ir.FPDoubleToFixedU64(fltval, 0, rounding_mode);
} else {
UNREACHABLE();
}
v.X(intsize, Rd, intval);
return true;
}
bool TranslatorVisitor::FCVTNS_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertSignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::ToNearest_TieEven);
}
bool TranslatorVisitor::FCVTNU_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertUnsignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::ToNearest_TieEven);
}
bool TranslatorVisitor::FCVTZS_float_int(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertSignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::TowardsZero);
}
bool TranslatorVisitor::FCVTZU_float_int(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertUnsignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::TowardsZero);
}
bool TranslatorVisitor::FCVTAS_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertSignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::ToNearest_TieAwayFromZero);
}
bool TranslatorVisitor::FCVTAU_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertUnsignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::ToNearest_TieAwayFromZero);
}
bool TranslatorVisitor::FCVTPS_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertSignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::TowardsPlusInfinity);
}
bool TranslatorVisitor::FCVTPU_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertUnsignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::TowardsPlusInfinity);
}
bool TranslatorVisitor::FCVTMS_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertSignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::TowardsMinusInfinity);
}
bool TranslatorVisitor::FCVTMU_float(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
return FloaingPointConvertUnsignedInteger(*this, sf, type, Vn, Rd, FP::RoundingMode::TowardsMinusInfinity);
}
} // namespace Dynarmic::A64