dynarmic/src/frontend/A32/translate/impl/asimd_two_regs_misc.cpp
2020-06-17 10:21:59 +01:00

216 lines
6.4 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2020 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include "common/bit_util.h"
#include "frontend/A32/translate/impl/translate_arm.h"
namespace Dynarmic::A32 {
bool ArmTranslatorVisitor::asimd_VREV(bool D, size_t sz, size_t Vd, size_t op, bool Q, bool M, size_t Vm) {
if (op + sz >= 3) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, m, op, sz] {
const auto reg_m = ir.GetVector(m);
const size_t esize = 16U << sz;
const auto shift = static_cast<u8>(8U << sz);
// 64-bit regions
if (op == 0b00) {
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, shift),
ir.VectorLogicalShiftLeft(esize, reg_m, shift));
switch (sz) {
case 0: // 8-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b00011011);
result = ir.VectorShuffleHighHalfwords(result, 0b00011011);
break;
case 1: // 16-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b01001110);
result = ir.VectorShuffleHighHalfwords(result, 0b01001110);
break;
}
return result;
}
// 32-bit regions
if (op == 0b01) {
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, shift),
ir.VectorLogicalShiftLeft(esize, reg_m, shift));
// If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword
// e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially
// changing [3, 2, 1, 0] to [2, 3, 0, 1]
if (sz == 0) {
result = ir.VectorShuffleLowHalfwords(result, 0b10110001);
result = ir.VectorShuffleHighHalfwords(result, 0b10110001);
}
return result;
}
// 16-bit regions
return ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, 8),
ir.VectorLogicalShiftLeft(esize, reg_m, 8));
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCLS(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, m, sz] {
const auto reg_m = ir.GetVector(m);
const size_t esize = 8U << sz;
const auto shifted = ir.VectorArithmeticShiftRight(esize, reg_m, static_cast<u8>(esize));
const auto xored = ir.VectorEor(reg_m, shifted);
const auto clz = ir.VectorCountLeadingZeros(esize, xored);
return ir.VectorSub(esize, clz, ir.VectorBroadcast(esize, I(esize, 1)));
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCLZ(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, m, sz] {
const auto reg_m = ir.GetVector(m);
const size_t esize = 8U << sz;
return ir.VectorCountLeadingZeros(esize, reg_m);
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCNT(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) {
if (sz != 0b00) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto reg_m = ir.GetVector(m);
const auto result = ir.VectorPopulationCount(reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VABS(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (F && sz != 0b10)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, F, m, sz] {
const auto reg_m = ir.GetVector(m);
if (F) {
return ir.FPVectorAbs(32, reg_m);
}
const size_t esize = 8U << sz;
return ir.VectorAbs(esize, reg_m);
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VNEG(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (F && sz != 0b10)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto result = [this, F, m, sz] {
const auto reg_m = ir.GetVector(m);
if (F) {
return ir.FPVectorNeg(32, reg_m);
}
const size_t esize = 8U << sz;
return ir.VectorSub(esize, ir.ZeroVector(), reg_m);
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VSWP(bool D, size_t Vd, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
// Swapping the same register results in the same contents.
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
if (d == m) {
return true;
}
if (Q) {
const auto reg_d = ir.GetVector(d);
const auto reg_m = ir.GetVector(m);
ir.SetVector(m, reg_d);
ir.SetVector(d, reg_m);
} else {
const auto reg_d = ir.GetExtendedRegister(d);
const auto reg_m = ir.GetExtendedRegister(m);
ir.SetExtendedRegister(m, reg_d);
ir.SetExtendedRegister(d, reg_m);
}
return true;
}
} // namespace Dynarmic::A32