dynarmic/src/backend_x64/emit_x64_vector_floating_point.cpp
2020-04-22 20:46:22 +01:00

806 lines
29 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <array>
#include <tuple>
#include <type_traits>
#include <utility>
#include "backend_x64/abi.h"
#include "backend_x64/block_of_code.h"
#include "backend_x64/emit_x64.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/fp/fpcr.h"
#include "common/fp/info.h"
#include "common/fp/op.h"
#include "common/fp/util.h"
#include "common/mp/function_info.h"
#include "common/mp/integer.h"
#include "frontend/ir/basic_block.h"
#include "frontend/ir/microinstruction.h"
namespace Dynarmic::BackendX64 {
using namespace Xbyak::util;
namespace mp = Common::mp;
template<size_t fsize, typename T>
static T ChooseOnFsize(T f32, T f64) {
static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
if constexpr (fsize == 32) {
return f32;
} else {
return f64;
}
}
#define FCODE(NAME) (code.*ChooseOnFsize<fsize>(&Xbyak::CodeGenerator::NAME##s, &Xbyak::CodeGenerator::NAME##d))
template<size_t fsize, template<typename> class Indexer, size_t narg>
struct NaNHandler {
private:
template<size_t... argi>
static auto GetDefaultImpl(std::index_sequence<argi...>) {
using FPT = mp::unsigned_integer_of_size<fsize>;
auto result = [](std::array<VectorArray<FPT>, sizeof...(argi) + 1>& values) {
VectorArray<FPT>& result = values[0];
for (size_t elementi = 0; elementi < result.size(); ++elementi) {
const auto current_values = Indexer<FPT>{}(elementi, values[argi + 1]...);
if (auto r = FP::ProcessNaNs(std::get<argi>(current_values)...)) {
result[elementi] = *r;
} else if (FP::IsNaN(result[elementi])) {
result[elementi] = FP::FPInfo<FPT>::DefaultNaN();
}
}
};
return static_cast<mp::equivalent_function_type_t<decltype(result)>*>(result);
}
public:
static auto GetDefault() {
return GetDefaultImpl(std::make_index_sequence<narg - 1>{});
}
using function_type = mp::return_type_t<decltype(GetDefault)>;
};
template<size_t fsize, size_t nargs, typename NaNHandler>
static void HandleNaNs(BlockOfCode& code, EmitContext& ctx, std::array<Xbyak::Xmm, nargs + 1> xmms, const Xbyak::Xmm& nan_mask, NaNHandler nan_handler) {
static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE41)) {
code.ptest(nan_mask, nan_mask);
} else {
const Xbyak::Reg32 bitmask = ctx.reg_alloc.ScratchGpr().cvt32();
code.movmskps(bitmask, nan_mask);
code.cmp(bitmask, 0);
}
Xbyak::Label end;
Xbyak::Label nan;
code.jz(end);
code.jmp(nan, code.T_NEAR);
code.L(end);
code.SwitchToFarCode();
code.L(nan);
const Xbyak::Xmm result = xmms[0];
code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
const size_t stack_space = xmms.size() * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
for (size_t i = 0; i < xmms.size(); ++i) {
code.movaps(xword[rsp + ABI_SHADOW_SPACE + i * 16], xmms[i]);
}
code.lea(code.ABI_PARAM1, ptr[rsp + ABI_SHADOW_SPACE + 0 * 16]);
code.CallFunction(nan_handler);
code.movaps(result, xword[rsp + ABI_SHADOW_SPACE + 0 * 16]);
code.add(rsp, stack_space + ABI_SHADOW_SPACE);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
template<typename T>
struct DefaultIndexer {
std::tuple<T, T> operator()(size_t i, const VectorArray<T>& a, const VectorArray<T>& b) {
return std::make_tuple(a[i], b[i]);
}
std::tuple<T, T, T> operator()(size_t i, const VectorArray<T>& a, const VectorArray<T>& b, const VectorArray<T>& c) {
return std::make_tuple(a[i], b[i], c[i]);
}
};
template<typename T>
struct PairedIndexer {
std::tuple<T, T> operator()(size_t i, const VectorArray<T>& a, const VectorArray<T>& b) {
constexpr size_t halfway = std::tuple_size_v<VectorArray<T>> / 2;
const size_t which_array = i / halfway;
i %= halfway;
switch (which_array) {
case 0:
return std::make_tuple(a[2 * i], a[2 * i + 1]);
case 1:
return std::make_tuple(b[2 * i], b[2 * i + 1]);
}
UNREACHABLE();
return {};
}
};
template<typename T>
struct PairedLowerIndexer {
std::tuple<T, T> operator()(size_t i, const VectorArray<T>& a, const VectorArray<T>& b) {
constexpr size_t array_size = std::tuple_size_v<VectorArray<T>>;
if constexpr (array_size == 4) {
switch (i) {
case 0:
return std::make_tuple(a[0], a[1]);
case 1:
return std::make_tuple(b[0], b[1]);
default:
return std::make_tuple(0, 0);
}
} else if constexpr (array_size == 2) {
if (i == 0) {
return std::make_tuple(a[0], b[0]);
}
return std::make_tuple(0, 0);
}
UNREACHABLE();
return {};
}
};
template<size_t fsize, template<typename> class Indexer, typename Function>
static void EmitThreeOpVectorOperation(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn, typename NaNHandler<fsize, Indexer, 3>::function_type nan_handler = NaNHandler<fsize, Indexer, 3>::GetDefault()) {
static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
if (!ctx.AccurateNaN() || ctx.FPSCR_DN()) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(xmm_a, xmm_b);
} else {
fn(xmm_a, xmm_b);
}
if (ctx.FPSCR_DN()) {
const Xbyak::Xmm nan_mask = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
code.pcmpeqw(tmp, tmp);
code.movaps(nan_mask, xmm_a);
FCODE(cmpordp)(nan_mask, nan_mask);
code.andps(xmm_a, nan_mask);
code.xorps(nan_mask, tmp);
code.andps(nan_mask, fsize == 32 ? code.MConst(xword, 0x7fc0'0000'7fc0'0000, 0x7fc0'0000'7fc0'0000) : code.MConst(xword, 0x7ff8'0000'0000'0000, 0x7ff8'0000'0000'0000));
code.orps(xmm_a, nan_mask);
}
ctx.reg_alloc.DefineValue(inst, xmm_a);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm nan_mask = ctx.reg_alloc.ScratchXmm();
code.movaps(nan_mask, xmm_b);
code.movaps(result, xmm_a);
FCODE(cmpunordp)(nan_mask, xmm_a);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, xmm_b);
} else {
fn(result, xmm_b);
}
FCODE(cmpunordp)(nan_mask, result);
HandleNaNs<fsize, 2>(code, ctx, {result, xmm_a, xmm_b}, nan_mask, nan_handler);
ctx.reg_alloc.DefineValue(inst, result);
}
template<size_t fsize, template<typename> class Indexer, typename Function>
static void EmitFourOpVectorOperation(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn, typename NaNHandler<fsize, Indexer, 4>::function_type nan_handler = NaNHandler<fsize, Indexer, 4>::GetDefault()) {
static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
if (!ctx.AccurateNaN() || ctx.FPSCR_DN()) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm xmm_c = ctx.reg_alloc.UseXmm(args[2]);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(xmm_a, xmm_b, xmm_c);
} else {
fn(xmm_a, xmm_b, xmm_c);
}
if (ctx.FPSCR_DN()) {
const Xbyak::Xmm nan_mask = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
code.pcmpeqw(tmp, tmp);
code.movaps(nan_mask, xmm_a);
FCODE(cmpordp)(nan_mask, nan_mask);
code.andps(xmm_a, nan_mask);
code.xorps(nan_mask, tmp);
code.andps(nan_mask, fsize == 32 ? code.MConst(xword, 0x7fc0'0000'7fc0'0000, 0x7fc0'0000'7fc0'0000) : code.MConst(xword, 0x7ff8'0000'0000'0000, 0x7ff8'0000'0000'0000));
code.orps(xmm_a, nan_mask);
}
ctx.reg_alloc.DefineValue(inst, xmm_a);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm xmm_c = ctx.reg_alloc.UseXmm(args[2]);
const Xbyak::Xmm nan_mask = ctx.reg_alloc.ScratchXmm();
code.movaps(nan_mask, xmm_b);
code.movaps(result, xmm_a);
FCODE(cmpunordp)(nan_mask, xmm_a);
FCODE(cmpunordp)(nan_mask, xmm_c);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, xmm_b, xmm_c);
} else {
fn(result, xmm_b, xmm_c);
}
FCODE(cmpunordp)(nan_mask, result);
HandleNaNs<fsize, 3>(code, ctx, {result, xmm_a, xmm_b, xmm_c}, nan_mask, nan_handler);
ctx.reg_alloc.DefineValue(inst, result);
}
template<typename Lambda>
inline void EmitTwoOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) {
const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm arg1 = ctx.reg_alloc.UseXmm(args[0]);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
constexpr u32 stack_space = 2 * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM1, ptr[rsp + ABI_SHADOW_SPACE + 0 * 16]);
code.lea(code.ABI_PARAM2, ptr[rsp + ABI_SHADOW_SPACE + 1 * 16]);
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.movaps(xword[code.ABI_PARAM2], arg1);
code.CallFunction(fn);
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 0 * 16]);
code.add(rsp, stack_space + ABI_SHADOW_SPACE);
ctx.reg_alloc.DefineValue(inst, xmm0);
}
template<typename Lambda>
inline void EmitThreeOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) {
const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm arg1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm arg2 = ctx.reg_alloc.UseXmm(args[1]);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
#ifdef _WIN32
constexpr u32 stack_space = 4 * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM1, ptr[rsp + ABI_SHADOW_SPACE + 1 * 16]);
code.lea(code.ABI_PARAM2, ptr[rsp + ABI_SHADOW_SPACE + 2 * 16]);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE + 3 * 16]);
code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR());
code.lea(rax, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(qword[rsp + ABI_SHADOW_SPACE + 0], rax);
#else
constexpr u32 stack_space = 3 * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM1, ptr[rsp + ABI_SHADOW_SPACE + 0 * 16]);
code.lea(code.ABI_PARAM2, ptr[rsp + ABI_SHADOW_SPACE + 1 * 16]);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE + 2 * 16]);
code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM5, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
#endif
code.movaps(xword[code.ABI_PARAM2], arg1);
code.movaps(xword[code.ABI_PARAM3], arg2);
code.CallFunction(fn);
#ifdef _WIN32
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 1 * 16]);
#else
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 0 * 16]);
#endif
code.add(rsp, stack_space + ABI_SHADOW_SPACE);
ctx.reg_alloc.DefineValue(inst, xmm0);
}
template<typename Lambda>
inline void EmitFourOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) {
const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm arg1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm arg2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm arg3 = ctx.reg_alloc.UseXmm(args[2]);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
#ifdef _WIN32
constexpr u32 stack_space = 5 * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM1, ptr[rsp + ABI_SHADOW_SPACE + 1 * 16]);
code.lea(code.ABI_PARAM2, ptr[rsp + ABI_SHADOW_SPACE + 2 * 16]);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE + 3 * 16]);
code.lea(code.ABI_PARAM4, ptr[rsp + ABI_SHADOW_SPACE + 4 * 16]);
code.mov(qword[rsp + ABI_SHADOW_SPACE + 0], ctx.FPCR());
code.lea(rax, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(qword[rsp + ABI_SHADOW_SPACE + 8], rax);
#else
constexpr u32 stack_space = 4 * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM1, ptr[rsp + ABI_SHADOW_SPACE + 0 * 16]);
code.lea(code.ABI_PARAM2, ptr[rsp + ABI_SHADOW_SPACE + 1 * 16]);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE + 2 * 16]);
code.lea(code.ABI_PARAM4, ptr[rsp + ABI_SHADOW_SPACE + 3 * 16]);
code.mov(code.ABI_PARAM5.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM6, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
#endif
code.movaps(xword[code.ABI_PARAM2], arg1);
code.movaps(xword[code.ABI_PARAM3], arg2);
code.movaps(xword[code.ABI_PARAM4], arg3);
code.CallFunction(fn);
#ifdef _WIN32
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 1 * 16]);
#else
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 0 * 16]);
#endif
code.add(rsp, stack_space + ABI_SHADOW_SPACE);
ctx.reg_alloc.DefineValue(inst, xmm0);
}
void EmitX64::EmitFPVectorAbs16(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Address mask = code.MConst(xword, 0x7FFF7FFF7FFF7FFF, 0x7FFF7FFF7FFF7FFF);
code.pand(a, mask);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorAbs32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Address mask = code.MConst(xword, 0x7FFFFFFF7FFFFFFF, 0x7FFFFFFF7FFFFFFF);
code.andps(a, mask);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorAbs64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Address mask = code.MConst(xword, 0x7FFFFFFFFFFFFFFF, 0x7FFFFFFFFFFFFFFF);
code.andpd(a, mask);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorAdd32(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<32, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::addps);
}
void EmitX64::EmitFPVectorAdd64(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<64, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::addpd);
}
void EmitX64::EmitFPVectorDiv32(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<32, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::divps);
}
void EmitX64::EmitFPVectorDiv64(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<64, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::divpd);
}
void EmitX64::EmitFPVectorEqual32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm b = ctx.reg_alloc.UseXmm(args[1]);
code.cmpeqps(a, b);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorEqual64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm b = ctx.reg_alloc.UseXmm(args[1]);
code.cmpeqpd(a, b);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorGreater32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm b = ctx.reg_alloc.UseScratchXmm(args[1]);
code.cmpltps(b, a);
ctx.reg_alloc.DefineValue(inst, b);
}
void EmitX64::EmitFPVectorGreater64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm b = ctx.reg_alloc.UseScratchXmm(args[1]);
code.cmpltpd(b, a);
ctx.reg_alloc.DefineValue(inst, b);
}
void EmitX64::EmitFPVectorGreaterEqual32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm b = ctx.reg_alloc.UseScratchXmm(args[1]);
code.cmpleps(b, a);
ctx.reg_alloc.DefineValue(inst, b);
}
void EmitX64::EmitFPVectorGreaterEqual64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm b = ctx.reg_alloc.UseScratchXmm(args[1]);
code.cmplepd(b, a);
ctx.reg_alloc.DefineValue(inst, b);
}
void EmitX64::EmitFPVectorMul32(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<32, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::mulps);
}
void EmitX64::EmitFPVectorMul64(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<64, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::mulpd);
}
template<size_t fsize>
void EmitFPVectorMulAdd(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) {
auto x64_instruction = fsize == 32 ? &Xbyak::CodeGenerator::vfmadd231ps : &Xbyak::CodeGenerator::vfmadd231pd;
EmitFourOpVectorOperation<fsize, DefaultIndexer>(code, ctx, inst, x64_instruction,
static_cast<void(*)(std::array<VectorArray<FPT>, 4>& values)>(
[](std::array<VectorArray<FPT>, 4>& values) {
VectorArray<FPT>& result = values[0];
const VectorArray<FPT>& a = values[1];
const VectorArray<FPT>& b = values[2];
const VectorArray<FPT>& c = values[3];
for (size_t i = 0; i < result.size(); i++) {
if (FP::IsQNaN(a[i]) && ((FP::IsInf(b[i]) && FP::IsZero(c[i])) || (FP::IsZero(b[i]) && FP::IsInf(c[i])))) {
result[i] = FP::FPInfo<FPT>::DefaultNaN();
} else if (auto r = FP::ProcessNaNs(a[i], b[i], c[i])) {
result[i] = *r;
} else if (FP::IsNaN(result[i])) {
result[i] = FP::FPInfo<FPT>::DefaultNaN();
}
}
}
)
);
return;
}
EmitFourOpFallback(code, ctx, inst,
[](VectorArray<FPT>& result, const VectorArray<FPT>& addend, const VectorArray<FPT>& op1, const VectorArray<FPT>& op2, FP::FPCR fpcr, FP::FPSR& fpsr) {
for (size_t i = 0; i < result.size(); i++) {
result[i] = FP::FPMulAdd<FPT>(addend[i], op1[i], op2[i], fpcr, fpsr);
}
}
);
}
void EmitX64::EmitFPVectorMulAdd32(EmitContext& ctx, IR::Inst* inst) {
EmitFPVectorMulAdd<32>(code, ctx, inst);
}
void EmitX64::EmitFPVectorMulAdd64(EmitContext& ctx, IR::Inst* inst) {
EmitFPVectorMulAdd<64>(code, ctx, inst);
}
void EmitX64::EmitFPVectorNeg16(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Address mask = code.MConst(xword, 0x8000800080008000, 0x8000800080008000);
code.pxor(a, mask);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorNeg32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Address mask = code.MConst(xword, 0x8000000080000000, 0x8000000080000000);
code.pxor(a, mask);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorNeg64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Address mask = code.MConst(xword, 0x8000000000000000, 0x8000000000000000);
code.pxor(a, mask);
ctx.reg_alloc.DefineValue(inst, a);
}
void EmitX64::EmitFPVectorPairedAdd32(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<32, PairedIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::haddps);
}
void EmitX64::EmitFPVectorPairedAdd64(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<64, PairedIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::haddpd);
}
void EmitX64::EmitFPVectorPairedAddLower32(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<32, PairedLowerIndexer>(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm xmm_b) {
const Xbyak::Xmm zero = ctx.reg_alloc.ScratchXmm();
code.xorps(zero, zero);
code.punpcklqdq(result, xmm_b);
code.haddps(result, zero);
});
}
void EmitX64::EmitFPVectorPairedAddLower64(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<64, PairedLowerIndexer>(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm xmm_b) {
const Xbyak::Xmm zero = ctx.reg_alloc.ScratchXmm();
code.xorps(zero, zero);
code.punpcklqdq(result, xmm_b);
code.haddpd(result, zero);
});
}
template<typename FPT>
static void EmitRSqrtEstimate(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
EmitTwoOpFallback(code, ctx, inst, [](VectorArray<FPT>& result, const VectorArray<FPT>& operand, FP::FPCR fpcr, FP::FPSR& fpsr) {
for (size_t i = 0; i < result.size(); i++) {
result[i] = FP::FPRSqrtEstimate<FPT>(operand[i], fpcr, fpsr);
}
});
}
void EmitX64::EmitFPVectorRSqrtEstimate32(EmitContext& ctx, IR::Inst* inst) {
EmitRSqrtEstimate<u32>(code, ctx, inst);
}
void EmitX64::EmitFPVectorRSqrtEstimate64(EmitContext& ctx, IR::Inst* inst) {
EmitRSqrtEstimate<u64>(code, ctx, inst);
}
template<typename FPT>
static void EmitRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpFallback(code, ctx, inst, [](VectorArray<FPT>& result, const VectorArray<FPT>& op1, const VectorArray<FPT>& op2, FP::FPCR fpcr, FP::FPSR& fpsr) {
for (size_t i = 0; i < result.size(); i++) {
result[i] = FP::FPRSqrtStepFused<FPT>(op1[i], op2[i], fpcr, fpsr);
}
});
}
void EmitX64::EmitFPVectorRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
EmitRSqrtStepFused<u32>(code, ctx, inst);
}
void EmitX64::EmitFPVectorRSqrtStepFused64(EmitContext& ctx, IR::Inst* inst) {
EmitRSqrtStepFused<u64>(code, ctx, inst);
}
void EmitX64::EmitFPVectorS32ToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm = ctx.reg_alloc.UseScratchXmm(args[0]);
code.cvtdq2ps(xmm, xmm);
ctx.reg_alloc.DefineValue(inst, xmm);
}
void EmitX64::EmitFPVectorS64ToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm = ctx.reg_alloc.UseScratchXmm(args[0]);
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512VL) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512DQ)) {
code.vcvtqq2pd(xmm, xmm);
} else if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE41)) {
const Xbyak::Xmm xmm_tmp = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
// First quadword
code.movq(tmp, xmm);
code.cvtsi2sd(xmm, tmp);
// Second quadword
code.pextrq(tmp, xmm, 1);
code.cvtsi2sd(xmm_tmp, tmp);
// Combine
code.unpcklpd(xmm, xmm_tmp);
} else {
const Xbyak::Xmm high_xmm = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm xmm_tmp = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
// First quadword
code.movhlps(high_xmm, xmm);
code.movq(tmp, xmm);
code.cvtsi2sd(xmm, tmp);
// Second quadword
code.movq(tmp, high_xmm);
code.cvtsi2sd(xmm_tmp, tmp);
// Combine
code.unpcklpd(xmm, xmm_tmp);
}
ctx.reg_alloc.DefineValue(inst, xmm);
}
void EmitX64::EmitFPVectorSub32(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<32, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::subps);
}
void EmitX64::EmitFPVectorSub64(EmitContext& ctx, IR::Inst* inst) {
EmitThreeOpVectorOperation<64, DefaultIndexer>(code, ctx, inst, &Xbyak::CodeGenerator::subpd);
}
void EmitX64::EmitFPVectorU32ToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm = ctx.reg_alloc.UseScratchXmm(args[0]);
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512DQ) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512VL)) {
code.vcvtudq2ps(xmm, xmm);
} else {
const Xbyak::Address mem_4B000000 = code.MConst(xword, 0x4B0000004B000000, 0x4B0000004B000000);
const Xbyak::Address mem_53000000 = code.MConst(xword, 0x5300000053000000, 0x5300000053000000);
const Xbyak::Address mem_D3000080 = code.MConst(xword, 0xD3000080D3000080, 0xD3000080D3000080);
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vpblendw(tmp, xmm, mem_4B000000, 0b10101010);
code.vpsrld(xmm, xmm, 16);
code.vpblendw(xmm, xmm, mem_53000000, 0b10101010);
code.vaddps(xmm, xmm, mem_D3000080);
code.vaddps(xmm, tmp, xmm);
} else {
const Xbyak::Address mem_0xFFFF = code.MConst(xword, 0x0000FFFF0000FFFF, 0x0000FFFF0000FFFF);
code.movdqa(tmp, mem_0xFFFF);
code.pand(tmp, xmm);
code.por(tmp, mem_4B000000);
code.psrld(xmm, 16);
code.por(xmm, mem_53000000);
code.addps(xmm, mem_D3000080);
code.addps(xmm, tmp);
}
}
if (ctx.FPSCR_RMode() == FP::RoundingMode::TowardsMinusInfinity) {
code.pand(xmm, code.MConst(xword, 0x7FFFFFFF7FFFFFFF, 0x7FFFFFFF7FFFFFFF));
}
ctx.reg_alloc.DefineValue(inst, xmm);
}
void EmitX64::EmitFPVectorU64ToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm = ctx.reg_alloc.UseScratchXmm(args[0]);
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512DQ) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512VL)) {
code.vcvtuqq2pd(xmm, xmm);
} else {
const Xbyak::Address unpack = code.MConst(xword, 0x4530000043300000, 0);
const Xbyak::Address subtrahend = code.MConst(xword, 0x4330000000000000, 0x4530000000000000);
const Xbyak::Xmm unpack_reg = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm subtrahend_reg = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm tmp1 = ctx.reg_alloc.ScratchXmm();
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vmovapd(unpack_reg, unpack);
code.vmovapd(subtrahend_reg, subtrahend);
code.vunpcklps(tmp1, xmm, unpack_reg);
code.vsubpd(tmp1, tmp1, subtrahend_reg);
code.vpermilps(xmm, xmm, 0b01001110);
code.vunpcklps(xmm, xmm, unpack_reg);
code.vsubpd(xmm, xmm, subtrahend_reg);
code.vhaddpd(xmm, tmp1, xmm);
} else {
const Xbyak::Xmm tmp2 = ctx.reg_alloc.ScratchXmm();
code.movapd(unpack_reg, unpack);
code.movapd(subtrahend_reg, subtrahend);
code.pshufd(tmp1, xmm, 0b01001110);
code.punpckldq(xmm, unpack_reg);
code.subpd(xmm, subtrahend_reg);
code.pshufd(tmp2, xmm, 0b01001110);
code.addpd(xmm, tmp2);
code.punpckldq(tmp1, unpack_reg);
code.subpd(tmp1, subtrahend_reg);
code.pshufd(unpack_reg, tmp1, 0b01001110);
code.addpd(unpack_reg, tmp1);
code.unpcklpd(xmm, unpack_reg);
}
}
if (ctx.FPSCR_RMode() == FP::RoundingMode::TowardsMinusInfinity) {
code.pand(xmm, code.MConst(xword, 0x7FFFFFFFFFFFFFFF, 0x7FFFFFFFFFFFFFFF));
}
ctx.reg_alloc.DefineValue(inst, xmm);
}
} // namespace Dynarmic::BackendX64