/* This file is part of the dynarmic project. * Copyright (c) 2018 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include "common/fp/rounding_mode.h" #include "frontend/A64/translate/impl/impl.h" namespace Dynarmic::A64 { namespace { enum class ComparisonType { EQ, GE, GT, LE, LT, }; bool CompareAgainstZero(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, ComparisonType type) { if (size == 0b11 && !Q) { return v.ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 zero = v.ir.ZeroVector(); IR::U128 result = [&] { switch (type) { case ComparisonType::EQ: return v.ir.VectorEqual(esize, operand, zero); case ComparisonType::GE: return v.ir.VectorGreaterEqualSigned(esize, operand, zero); case ComparisonType::GT: return v.ir.VectorGreaterSigned(esize, operand, zero); case ComparisonType::LE: return v.ir.VectorLessEqualSigned(esize, operand, zero); case ComparisonType::LT: default: return v.ir.VectorLessSigned(esize, operand, zero); } }(); if (datasize == 64) { result = v.ir.VectorZeroUpper(result); } v.V(datasize, Vd, result); return true; } bool FPCompareAgainstZero(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, ComparisonType type) { if (sz && !Q) { return v.ReservedValue(); } const size_t esize = sz ? 64 : 32; const size_t datasize = Q ? 128 : 64; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 zero = v.ir.ZeroVector(); const IR::U128 result = [&] { switch (type) { case ComparisonType::EQ: return v.ir.FPVectorEqual(esize, operand, zero); case ComparisonType::GE: return v.ir.FPVectorGreaterEqual(esize, operand, zero); case ComparisonType::GT: return v.ir.FPVectorGreater(esize, operand, zero); case ComparisonType::LE: return v.ir.FPVectorGreaterEqual(esize, zero, operand); case ComparisonType::LT: return v.ir.FPVectorGreater(esize, zero, operand); } UNREACHABLE(); return IR::U128{}; }(); v.V(datasize, Vd, result); return true; } enum class Signedness { Signed, Unsigned }; bool IntegerConvertToFloat(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, Signedness signedness) { if (sz && !Q) { return v.ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const FP::RoundingMode rounding_mode = v.ir.current_location->FPCR().RMode(); const IR::U128 operand = v.V(datasize, Vn); const IR::U128 result = signedness == Signedness::Signed ? v.ir.FPVectorFromSignedFixed(esize, operand, 0, rounding_mode) : v.ir.FPVectorFromUnsignedFixed(esize, operand, 0, rounding_mode); v.V(datasize, Vd, result); return true; } bool FloatConvertToInteger(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, Signedness signedness, FP::RoundingMode rounding_mode) { if (sz && !Q) { return v.ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 result = signedness == Signedness::Signed ? v.ir.FPVectorToSignedFixed(esize, operand, 0, rounding_mode) : v.ir.FPVectorToUnsignedFixed(esize, operand, 0, rounding_mode); v.V(datasize, Vd, result); return true; } bool FloatRoundToIntegral(TranslatorVisitor& v, bool Q, bool sz, Vec Vn, Vec Vd, FP::RoundingMode rounding_mode, bool exact) { if (sz && !Q) { return v.ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = v.V(datasize, Vn); const IR::U128 result = v.ir.FPVectorRoundInt(esize, operand, rounding_mode, exact); v.V(datasize, Vd, result); return true; } bool SaturatedNarrow(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, IR::U128 (IR::IREmitter::*fn)(size_t, const IR::U128&)) { if (size == 0b11) { return v.ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = 64; const size_t part = Q ? 1 : 0; const IR::U128 operand = v.V(2 * datasize, Vn); const IR::U128 result = (v.ir.*fn)(2 * esize, operand); v.Vpart(datasize, Vd, part, result); return true; } enum class PairedAddLongExtraBehavior { None, Accumulate, }; bool PairedAddLong(TranslatorVisitor& v, bool Q, Imm<2> size, Vec Vn, Vec Vd, Signedness sign, PairedAddLongExtraBehavior behavior) { if (size == 0b11) { return v.ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = v.V(datasize, Vn); IR::U128 result = [&] { if (sign == Signedness::Signed) { return v.ir.VectorPairedAddSignedWiden(esize, operand); } return v.ir.VectorPairedAddUnsignedWiden(esize, operand); }(); if (behavior == PairedAddLongExtraBehavior::Accumulate) { result = v.ir.VectorAdd(esize * 2, v.V(datasize, Vd), result); } if (datasize == 64) { result = v.ir.VectorZeroUpper(result); } v.V(datasize, Vd, result); return true; } } // Anonymous namespace bool TranslatorVisitor::CLS_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 shifted = ir.VectorArithmeticShiftRight(esize, operand, static_cast(esize)); const IR::U128 xored = ir.VectorEor(operand, shifted); const IR::U128 clz = ir.VectorCountLeadingZeros(esize, xored); IR::U128 result = ir.VectorSub(esize, clz, ir.VectorBroadcast(esize, I(esize, 1))); if (datasize == 64) { result = ir.VectorZeroUpper(result); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::CLZ_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); IR::U128 result = ir.VectorCountLeadingZeros(esize, operand); if (datasize == 64) { result = ir.VectorZeroUpper(result); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::CNT(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size != 0b00) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.VectorPopulationCount(operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::CMGE_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::GE); } bool TranslatorVisitor::CMGT_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::GT); } bool TranslatorVisitor::CMEQ_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::EQ); } bool TranslatorVisitor::CMLE_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::LE); } bool TranslatorVisitor::CMLT_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return CompareAgainstZero(*this, Q, size, Vn, Vd, ComparisonType::LT); } bool TranslatorVisitor::ABS_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (!Q && size == 0b11) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = 8 << size.ZeroExtend(); const IR::U128 data = V(datasize, Vn); const IR::U128 result = ir.VectorAbs(esize, data); V(datasize, Vd, result); return true; } bool TranslatorVisitor::XTN(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = 64; const size_t part = Q ? 1 : 0; const IR::U128 operand = V(2 * datasize, Vn); const IR::U128 result = ir.VectorNarrow(2 * esize, operand); Vpart(datasize, Vd, part, result); return true; } bool TranslatorVisitor::FABS_1(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const size_t esize = 16; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorAbs(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FABS_2(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorAbs(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FCMEQ_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::EQ); } bool TranslatorVisitor::FCMGE_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::GE); } bool TranslatorVisitor::FCMGT_zero_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::GT); } bool TranslatorVisitor::FCMLE_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::LE); } bool TranslatorVisitor::FCMLT_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FPCompareAgainstZero(*this, Q, sz, Vn, Vd, ComparisonType::LT); } bool TranslatorVisitor::FCVTL(bool Q, bool sz, Vec Vn, Vec Vd) { // Half-precision not handled directly. if (!sz) { return InterpretThisInstruction(); } const IR::U128 part = Vpart(64, Vn, Q); const auto rounding_mode = ir.current_location->FPCR().RMode(); IR::U128 result = ir.ZeroVector(); for (size_t i = 0; i < 2; i++) { const IR::U64 element = ir.FPSingleToDouble(ir.VectorGetElement(32, part, i), rounding_mode); result = ir.VectorSetElement(64, result, i, element); } V(128, Vd, result); return true; } bool TranslatorVisitor::FCVTN(bool Q, bool sz, Vec Vn, Vec Vd) { const size_t datasize = 64; const size_t esize = sz ? 32 : 16; const size_t num_elements = datasize / esize; const IR::U128 operand = V(128, Vn); const auto rounding_mode = ir.current_location->FPCR().RMode(); IR::U128 result = ir.ZeroVector(); for (size_t i = 0; i < num_elements; i++) { IR::U16U32U64 element = ir.VectorGetElement(2 * esize, operand, i); if (esize == 16) { element = ir.FPSingleToHalf(element, rounding_mode); } else if (esize == 32) { element = ir.FPDoubleToSingle(element, rounding_mode); } result = ir.VectorSetElement(esize, result, i, element); } Vpart(datasize, Vd, Q, result); return true; } bool TranslatorVisitor::FCVTNS_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Signed, FP::RoundingMode::ToNearest_TieEven); } bool TranslatorVisitor::FCVTMS_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Signed, FP::RoundingMode::TowardsMinusInfinity); } bool TranslatorVisitor::FCVTAS_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Signed, FP::RoundingMode::ToNearest_TieAwayFromZero); } bool TranslatorVisitor::FCVTPS_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Signed, FP::RoundingMode::TowardsPlusInfinity); } bool TranslatorVisitor::FCVTXN_2(bool Q, bool sz, Vec Vn, Vec Vd) { if (!sz) { return UnallocatedEncoding(); } const size_t part = Q ? 1 : 0; const auto operand = ir.GetQ(Vn); auto result = ir.ZeroVector(); for (size_t e = 0; e < 2; ++e) { const IR::U64 element = ir.VectorGetElement(64, operand, e); const IR::U32 converted = ir.FPDoubleToSingle(element, FP::RoundingMode::ToOdd); result = ir.VectorSetElement(32, result, e, converted); } Vpart(64, Vd, part, result); return true; } bool TranslatorVisitor::FCVTZS_int_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Signed, FP::RoundingMode::TowardsZero); } bool TranslatorVisitor::FCVTNU_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Unsigned, FP::RoundingMode::ToNearest_TieEven); } bool TranslatorVisitor::FCVTMU_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Unsigned, FP::RoundingMode::TowardsMinusInfinity); } bool TranslatorVisitor::FCVTAU_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Unsigned, FP::RoundingMode::ToNearest_TieAwayFromZero); } bool TranslatorVisitor::FCVTPU_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Unsigned, FP::RoundingMode::TowardsPlusInfinity); } bool TranslatorVisitor::FCVTZU_int_4(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatConvertToInteger(*this, Q, sz, Vn, Vd, Signedness::Unsigned, FP::RoundingMode::TowardsZero); } bool TranslatorVisitor::FRINTN_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd, FP::RoundingMode::ToNearest_TieEven, false); } bool TranslatorVisitor::FRINTM_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd, FP::RoundingMode::TowardsMinusInfinity, false); } bool TranslatorVisitor::FRINTP_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd, FP::RoundingMode::TowardsPlusInfinity, false); } bool TranslatorVisitor::FRINTZ_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd, FP::RoundingMode::TowardsZero, false); } bool TranslatorVisitor::FRINTA_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd, FP::RoundingMode::ToNearest_TieAwayFromZero, false); } bool TranslatorVisitor::FRINTX_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd, ir.current_location->FPCR().RMode(), true); } bool TranslatorVisitor::FRINTI_2(bool Q, bool sz, Vec Vn, Vec Vd) { return FloatRoundToIntegral(*this, Q, sz, Vn, Vd,ir.current_location->FPCR().RMode(), false); } bool TranslatorVisitor::FRECPE_4(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorRecipEstimate(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FSQRT_2(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorSqrt(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FRSQRTE_4(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.FPVectorRSqrtEstimate(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FNEG_1(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 mask = ir.VectorBroadcast(64, I(64, 0x8000800080008000)); const IR::U128 result = ir.VectorEor(operand, mask); V(datasize, Vd, result); return true; } bool TranslatorVisitor::FNEG_2(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz && !Q) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const size_t esize = sz ? 64 : 32; const size_t mask_value = esize == 64 ? 0x8000000000000000 : 0x8000000080000000; const IR::U128 operand = V(datasize, Vn); const IR::U128 mask = Q ? ir.VectorBroadcast(esize, I(esize, mask_value)) : ir.VectorBroadcastLower(esize, I(esize, mask_value)); const IR::U128 result = ir.VectorEor(operand, mask); V(datasize, Vd, result); return true; } bool TranslatorVisitor::NEG_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11 && !Q) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 zero = ir.ZeroVector(); const IR::U128 result = ir.VectorSub(esize, zero, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::SQXTUN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorSignedSaturatedNarrowToUnsigned); } bool TranslatorVisitor::SQXTN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorSignedSaturatedNarrowToSigned); } bool TranslatorVisitor::UQXTN_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return SaturatedNarrow(*this, Q, size, Vn, Vd, &IR::IREmitter::VectorUnsignedSaturatedNarrow); } bool TranslatorVisitor::NOT(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); IR::U128 result = ir.VectorNot(operand); if (datasize == 64) { result = ir.VectorZeroUpper(result); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::RBIT_asimd(bool Q, Vec Vn, Vec Vd) { const size_t datasize = Q ? 128 : 64; const IR::U128 data = V(datasize, Vn); const IR::U128 result = ir.VectorReverseBits(data); V(datasize, Vd, result); return true; } bool TranslatorVisitor::REV16_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size != 0) { return UnallocatedEncoding(); } const size_t datasize = Q ? 128 : 64; constexpr size_t esize = 16; const IR::U128 data = V(datasize, Vn); const IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, 8), ir.VectorLogicalShiftLeft(esize, data, 8)); V(datasize, Vd, result); return true; } bool TranslatorVisitor::REV32_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { const u32 zext_size = size.ZeroExtend(); if (zext_size > 1) { return UnallocatedEncoding(); } const size_t datasize = Q ? 128 : 64; const size_t esize = 16 << zext_size; const u8 shift = static_cast(8 << zext_size); const IR::U128 data = V(datasize, Vn); // TODO: Consider factoring byte swapping code out into its own opcode. // Technically the rest of the following code can be a PSHUFB // in the presence of SSSE3. IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift), ir.VectorLogicalShiftLeft(esize, data, shift)); // If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword // e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially // changing [3, 2, 1, 0] to [2, 3, 0, 1] if (zext_size == 0) { result = ir.VectorShuffleLowHalfwords(result, 0b10110001); result = ir.VectorShuffleHighHalfwords(result, 0b10110001); } V(datasize, Vd, result); return true; } bool TranslatorVisitor::REV64_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) { const u32 zext_size = size.ZeroExtend(); if (zext_size >= 3) { return UnallocatedEncoding(); } const size_t datasize = Q ? 128 : 64; const size_t esize = 16 << zext_size; const u8 shift = static_cast(8 << zext_size); const IR::U128 data = V(datasize, Vn); // TODO: Consider factoring byte swapping code out into its own opcode. // Technically the rest of the following code can be a PSHUFB // in the presence of SSSE3. IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift), ir.VectorLogicalShiftLeft(esize, data, shift)); switch (zext_size) { case 0: // 8-bit elements result = ir.VectorShuffleLowHalfwords(result, 0b00011011); result = ir.VectorShuffleHighHalfwords(result, 0b00011011); break; case 1: // 16-bit elements result = ir.VectorShuffleLowHalfwords(result, 0b01001110); result = ir.VectorShuffleHighHalfwords(result, 0b01001110); break; } V(datasize, Vd, result); return true; } bool TranslatorVisitor::SQABS_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11 && !Q) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.VectorSignedSaturatedAbs(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::SQNEG_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11 && !Q) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.VectorSignedSaturatedNeg(esize, operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::SUQADD_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11 && !Q) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand1 = V(datasize, Vn); const IR::U128 operand2 = V(datasize, Vd); const IR::U128 result = ir.VectorSignedSaturatedAccumulateUnsigned(esize, operand1, operand2); V(datasize, Vd, result); return true; } bool TranslatorVisitor::USQADD_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11 && !Q) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const size_t datasize = Q ? 128 : 64; const IR::U128 operand1 = V(datasize, Vn); const IR::U128 operand2 = V(datasize, Vd); const IR::U128 result = ir.VectorUnsignedSaturatedAccumulateSigned(esize, operand1, operand2); V(datasize, Vd, result); return true; } bool TranslatorVisitor::SADALP(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return PairedAddLong(*this, Q, size, Vn, Vd, Signedness::Signed, PairedAddLongExtraBehavior::Accumulate); } bool TranslatorVisitor::SADDLP(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return PairedAddLong(*this, Q, size, Vn, Vd, Signedness::Signed, PairedAddLongExtraBehavior::None); } bool TranslatorVisitor::UADALP(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return PairedAddLong(*this, Q, size, Vn, Vd, Signedness::Unsigned, PairedAddLongExtraBehavior::Accumulate); } bool TranslatorVisitor::UADDLP(bool Q, Imm<2> size, Vec Vn, Vec Vd) { return PairedAddLong(*this, Q, size, Vn, Vd, Signedness::Unsigned, PairedAddLongExtraBehavior::None); } bool TranslatorVisitor::URECPE(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.VectorUnsignedRecipEstimate(operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::URSQRTE(bool Q, bool sz, Vec Vn, Vec Vd) { if (sz) { return ReservedValue(); } const size_t datasize = Q ? 128 : 64; const IR::U128 operand = V(datasize, Vn); const IR::U128 result = ir.VectorUnsignedRecipSqrtEstimate(operand); V(datasize, Vd, result); return true; } bool TranslatorVisitor::SCVTF_int_4(bool Q, bool sz, Vec Vn, Vec Vd) { return IntegerConvertToFloat(*this, Q, sz, Vn, Vd, Signedness::Signed); } bool TranslatorVisitor::UCVTF_int_4(bool Q, bool sz, Vec Vn, Vec Vd) { return IntegerConvertToFloat(*this, Q, sz, Vn, Vd, Signedness::Unsigned); } bool TranslatorVisitor::SHLL(bool Q, Imm<2> size, Vec Vn, Vec Vd) { if (size == 0b11) { return ReservedValue(); } const size_t esize = 8 << size.ZeroExtend(); const IR::U128 operand = ir.VectorZeroExtend(esize, Vpart(64, Vn, Q)); const IR::U128 result = ir.VectorLogicalShiftLeft(esize * 2, operand, static_cast(esize)); V(128, Vd, result); return true; } } // namespace Dynarmic::A64