IR: Compile-time type-checking of IR

This commit is contained in:
MerryMage 2018-01-05 21:47:23 +00:00
parent 44f7f04b5c
commit f61da0b5a9
13 changed files with 697 additions and 618 deletions

View file

@ -23,230 +23,230 @@ u32 IREmitter::AlignPC(size_t alignment) {
return static_cast<u32>(pc - pc % alignment);
}
IR::Value IREmitter::GetRegister(A32::Reg reg) {
IR::U32 IREmitter::GetRegister(Reg reg) {
if (reg == A32::Reg::PC) {
return Imm32(PC());
}
return Inst(Opcode::A32GetRegister, { IR::Value(reg) });
return Inst<IR::U32>(Opcode::A32GetRegister, IR::Value(reg));
}
IR::Value IREmitter::GetExtendedRegister(A32::ExtReg reg) {
IR::F32F64 IREmitter::GetExtendedRegister(ExtReg reg) {
if (A32::IsSingleExtReg(reg)) {
return Inst(Opcode::A32GetExtendedRegister32, {IR::Value(reg)});
return Inst<IR::F32F64>(Opcode::A32GetExtendedRegister32, IR::Value(reg));
}
if (A32::IsDoubleExtReg(reg)) {
return Inst(Opcode::A32GetExtendedRegister64, {IR::Value(reg)});
return Inst<IR::F32F64>(Opcode::A32GetExtendedRegister64, IR::Value(reg));
}
ASSERT_MSG(false, "Invalid reg.");
}
void IREmitter::SetRegister(const A32::Reg reg, const IR::Value& value) {
void IREmitter::SetRegister(const Reg reg, const IR::U32& value) {
ASSERT(reg != A32::Reg::PC);
Inst(Opcode::A32SetRegister, { IR::Value(reg), value });
Inst(Opcode::A32SetRegister, IR::Value(reg), value);
}
void IREmitter::SetExtendedRegister(const A32::ExtReg reg, const IR::Value& value) {
void IREmitter::SetExtendedRegister(const ExtReg reg, const IR::F32F64& value) {
if (A32::IsSingleExtReg(reg)) {
Inst(Opcode::A32SetExtendedRegister32, {IR::Value(reg), value});
Inst(Opcode::A32SetExtendedRegister32, IR::Value(reg), value);
} else if (A32::IsDoubleExtReg(reg)) {
Inst(Opcode::A32SetExtendedRegister64, {IR::Value(reg), value});
Inst(Opcode::A32SetExtendedRegister64, IR::Value(reg), value);
} else {
ASSERT_MSG(false, "Invalid reg.");
}
}
void IREmitter::ALUWritePC(const IR::Value& value) {
void IREmitter::ALUWritePC(const IR::U32& value) {
// This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k
BranchWritePC(value);
}
void IREmitter::BranchWritePC(const IR::Value& value) {
void IREmitter::BranchWritePC(const IR::U32& value) {
if (!current_location.TFlag()) {
auto new_pc = And(value, Imm32(0xFFFFFFFC));
Inst(Opcode::A32SetRegister, { IR::Value(A32::Reg::PC), new_pc });
Inst(Opcode::A32SetRegister, IR::Value(A32::Reg::PC), new_pc);
} else {
auto new_pc = And(value, Imm32(0xFFFFFFFE));
Inst(Opcode::A32SetRegister, { IR::Value(A32::Reg::PC), new_pc });
Inst(Opcode::A32SetRegister, IR::Value(A32::Reg::PC), new_pc);
}
}
void IREmitter::BXWritePC(const IR::Value& value) {
Inst(Opcode::A32BXWritePC, {value});
void IREmitter::BXWritePC(const IR::U32& value) {
Inst(Opcode::A32BXWritePC, value);
}
void IREmitter::LoadWritePC(const IR::Value& value) {
void IREmitter::LoadWritePC(const IR::U32& value) {
// This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k
BXWritePC(value);
}
void IREmitter::CallSupervisor(const IR::Value& value) {
Inst(Opcode::A32CallSupervisor, {value});
void IREmitter::CallSupervisor(const IR::U32& value) {
Inst(Opcode::A32CallSupervisor, value);
}
IR::Value IREmitter::GetCpsr() {
return Inst(Opcode::A32GetCpsr, {});
IR::U32 IREmitter::GetCpsr() {
return Inst<IR::U32>(Opcode::A32GetCpsr);
}
void IREmitter::SetCpsr(const IR::Value& value) {
Inst(Opcode::A32SetCpsr, {value});
void IREmitter::SetCpsr(const IR::U32& value) {
Inst(Opcode::A32SetCpsr, value);
}
void IREmitter::SetCpsrNZCV(const IR::Value& value) {
Inst(Opcode::A32SetCpsrNZCV, {value});
void IREmitter::SetCpsrNZCV(const IR::U32& value) {
Inst(Opcode::A32SetCpsrNZCV, value);
}
void IREmitter::SetCpsrNZCVQ(const IR::Value& value) {
Inst(Opcode::A32SetCpsrNZCVQ, {value});
void IREmitter::SetCpsrNZCVQ(const IR::U32& value) {
Inst(Opcode::A32SetCpsrNZCVQ, value);
}
IR::Value IREmitter::GetCFlag() {
return Inst(Opcode::A32GetCFlag, {});
IR::U1 IREmitter::GetCFlag() {
return Inst<IR::U1>(Opcode::A32GetCFlag);
}
void IREmitter::SetNFlag(const IR::Value& value) {
Inst(Opcode::A32SetNFlag, {value});
void IREmitter::SetNFlag(const IR::U1& value) {
Inst(Opcode::A32SetNFlag, value);
}
void IREmitter::SetZFlag(const IR::Value& value) {
Inst(Opcode::A32SetZFlag, {value});
void IREmitter::SetZFlag(const IR::U1& value) {
Inst(Opcode::A32SetZFlag, value);
}
void IREmitter::SetCFlag(const IR::Value& value) {
Inst(Opcode::A32SetCFlag, {value});
void IREmitter::SetCFlag(const IR::U1& value) {
Inst(Opcode::A32SetCFlag, value);
}
void IREmitter::SetVFlag(const IR::Value& value) {
Inst(Opcode::A32SetVFlag, {value});
void IREmitter::SetVFlag(const IR::U1& value) {
Inst(Opcode::A32SetVFlag, value);
}
void IREmitter::OrQFlag(const IR::Value& value) {
Inst(Opcode::A32OrQFlag, {value});
void IREmitter::OrQFlag(const IR::U1& value) {
Inst(Opcode::A32OrQFlag, value);
}
IR::Value IREmitter::GetGEFlags() {
return Inst(Opcode::A32GetGEFlags, {});
IR::U32 IREmitter::GetGEFlags() {
return Inst<IR::U32>(Opcode::A32GetGEFlags);
}
void IREmitter::SetGEFlags(const IR::Value& value) {
Inst(Opcode::A32SetGEFlags, {value});
void IREmitter::SetGEFlags(const IR::U32& value) {
Inst(Opcode::A32SetGEFlags, value);
}
void IREmitter::SetGEFlagsCompressed(const IR::Value& value) {
Inst(Opcode::A32SetGEFlagsCompressed, {value});
void IREmitter::SetGEFlagsCompressed(const IR::U32& value) {
Inst(Opcode::A32SetGEFlagsCompressed, value);
}
IR::Value IREmitter::GetFpscr() {
return Inst(Opcode::A32GetFpscr, {});
IR::U32 IREmitter::GetFpscr() {
return Inst<IR::U32>(Opcode::A32GetFpscr);
}
void IREmitter::SetFpscr(const IR::Value& new_fpscr) {
Inst(Opcode::A32SetFpscr, {new_fpscr});
void IREmitter::SetFpscr(const IR::U32& new_fpscr) {
Inst(Opcode::A32SetFpscr, new_fpscr);
}
IR::Value IREmitter::GetFpscrNZCV() {
return Inst(Opcode::A32GetFpscrNZCV, {});
IR::U32 IREmitter::GetFpscrNZCV() {
return Inst<IR::U32>(Opcode::A32GetFpscrNZCV);
}
void IREmitter::SetFpscrNZCV(const IR::Value& new_fpscr_nzcv) {
Inst(Opcode::A32SetFpscrNZCV, {new_fpscr_nzcv});
void IREmitter::SetFpscrNZCV(const IR::U32& new_fpscr_nzcv) {
Inst(Opcode::A32SetFpscrNZCV, new_fpscr_nzcv);
}
void IREmitter::ClearExclusive() {
Inst(Opcode::A32ClearExclusive, {});
Inst(Opcode::A32ClearExclusive);
}
void IREmitter::SetExclusive(const IR::Value& vaddr, size_t byte_size) {
void IREmitter::SetExclusive(const IR::U32& vaddr, size_t byte_size) {
ASSERT(byte_size == 1 || byte_size == 2 || byte_size == 4 || byte_size == 8 || byte_size == 16);
Inst(Opcode::A32SetExclusive, {vaddr, Imm8(u8(byte_size))});
Inst(Opcode::A32SetExclusive, vaddr, Imm8(u8(byte_size)));
}
IR::Value IREmitter::ReadMemory8(const IR::Value& vaddr) {
return Inst(Opcode::A32ReadMemory8, {vaddr});
IR::U8 IREmitter::ReadMemory8(const IR::U32& vaddr) {
return Inst<IR::U8>(Opcode::A32ReadMemory8, vaddr);
}
IR::Value IREmitter::ReadMemory16(const IR::Value& vaddr) {
auto value = Inst(Opcode::A32ReadMemory16, {vaddr});
IR::U16 IREmitter::ReadMemory16(const IR::U32& vaddr) {
auto value = Inst<IR::U16>(Opcode::A32ReadMemory16, vaddr);
return current_location.EFlag() ? ByteReverseHalf(value) : value;
}
IR::Value IREmitter::ReadMemory32(const IR::Value& vaddr) {
auto value = Inst(Opcode::A32ReadMemory32, {vaddr});
IR::U32 IREmitter::ReadMemory32(const IR::U32& vaddr) {
auto value = Inst<IR::U32>(Opcode::A32ReadMemory32, vaddr);
return current_location.EFlag() ? ByteReverseWord(value) : value;
}
IR::Value IREmitter::ReadMemory64(const IR::Value& vaddr) {
auto value = Inst(Opcode::A32ReadMemory64, {vaddr});
IR::U64 IREmitter::ReadMemory64(const IR::U32& vaddr) {
auto value = Inst<IR::U64>(Opcode::A32ReadMemory64, vaddr);
return current_location.EFlag() ? ByteReverseDual(value) : value;
}
void IREmitter::WriteMemory8(const IR::Value& vaddr, const IR::Value& value) {
Inst(Opcode::A32WriteMemory8, {vaddr, value});
void IREmitter::WriteMemory8(const IR::U32& vaddr, const IR::U8& value) {
Inst(Opcode::A32WriteMemory8, vaddr, value);
}
void IREmitter::WriteMemory16(const IR::Value& vaddr, const IR::Value& value) {
void IREmitter::WriteMemory16(const IR::U32& vaddr, const IR::U16& value) {
if (current_location.EFlag()) {
auto v = ByteReverseHalf(value);
Inst(Opcode::A32WriteMemory16, {vaddr, v});
Inst(Opcode::A32WriteMemory16, vaddr, v);
} else {
Inst(Opcode::A32WriteMemory16, {vaddr, value});
Inst(Opcode::A32WriteMemory16, vaddr, value);
}
}
void IREmitter::WriteMemory32(const IR::Value& vaddr, const IR::Value& value) {
void IREmitter::WriteMemory32(const IR::U32& vaddr, const IR::U32& value) {
if (current_location.EFlag()) {
auto v = ByteReverseWord(value);
Inst(Opcode::A32WriteMemory32, {vaddr, v});
Inst(Opcode::A32WriteMemory32, vaddr, v);
} else {
Inst(Opcode::A32WriteMemory32, {vaddr, value});
Inst(Opcode::A32WriteMemory32, vaddr, value);
}
}
void IREmitter::WriteMemory64(const IR::Value& vaddr, const IR::Value& value) {
void IREmitter::WriteMemory64(const IR::U32& vaddr, const IR::U64& value) {
if (current_location.EFlag()) {
auto v = ByteReverseDual(value);
Inst(Opcode::A32WriteMemory64, {vaddr, v});
Inst(Opcode::A32WriteMemory64, vaddr, v);
} else {
Inst(Opcode::A32WriteMemory64, {vaddr, value});
Inst(Opcode::A32WriteMemory64, vaddr, value);
}
}
IR::Value IREmitter::ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value) {
return Inst(Opcode::A32ExclusiveWriteMemory8, {vaddr, value});
IR::U32 IREmitter::ExclusiveWriteMemory8(const IR::U32& vaddr, const IR::U8& value) {
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory8, vaddr, value);
}
IR::Value IREmitter::ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value) {
IR::U32 IREmitter::ExclusiveWriteMemory16(const IR::U32& vaddr, const IR::U16& value) {
if (current_location.EFlag()) {
auto v = ByteReverseHalf(value);
return Inst(Opcode::A32ExclusiveWriteMemory16, {vaddr, v});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory16, vaddr, v);
} else {
return Inst(Opcode::A32ExclusiveWriteMemory16, {vaddr, value});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory16, vaddr, value);
}
}
IR::Value IREmitter::ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value) {
IR::U32 IREmitter::ExclusiveWriteMemory32(const IR::U32& vaddr, const IR::U32& value) {
if (current_location.EFlag()) {
auto v = ByteReverseWord(value);
return Inst(Opcode::A32ExclusiveWriteMemory32, {vaddr, v});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory32, vaddr, v);
} else {
return Inst(Opcode::A32ExclusiveWriteMemory32, {vaddr, value});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory32, vaddr, value);
}
}
IR::Value IREmitter::ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi) {
IR::U32 IREmitter::ExclusiveWriteMemory64(const IR::U32& vaddr, const IR::U32& value_lo, const IR::U32& value_hi) {
if (current_location.EFlag()) {
auto vlo = ByteReverseWord(value_lo);
auto vhi = ByteReverseWord(value_hi);
return Inst(Opcode::A32ExclusiveWriteMemory64, {vaddr, vlo, vhi});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory64, vaddr, vlo, vhi);
} else {
return Inst(Opcode::A32ExclusiveWriteMemory64, {vaddr, value_lo, value_hi});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory64, vaddr, value_lo, value_hi);
}
}
void IREmitter::CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRd, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2) {
void IREmitter::CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, CoprocReg CRd, CoprocReg CRn, CoprocReg CRm, size_t opc2) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -255,10 +255,10 @@ void IREmitter::CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1,
static_cast<u8>(CRn),
static_cast<u8>(CRm),
static_cast<u8>(opc2)};
Inst(Opcode::A32CoprocInternalOperation, {IR::Value(coproc_info)});
Inst(Opcode::A32CoprocInternalOperation, IR::Value(coproc_info));
}
void IREmitter::CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2, const IR::Value& word) {
void IREmitter::CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2, const IR::U32& word) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -266,19 +266,19 @@ void IREmitter::CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, A32::
static_cast<u8>(CRn),
static_cast<u8>(CRm),
static_cast<u8>(opc2)};
Inst(Opcode::A32CoprocSendOneWord, {IR::Value(coproc_info), word});
Inst(Opcode::A32CoprocSendOneWord, IR::Value(coproc_info), word);
}
void IREmitter::CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm, const IR::Value& word1, const IR::Value& word2) {
void IREmitter::CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm, const IR::U32& word1, const IR::U32& word2) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
static_cast<u8>(opc),
static_cast<u8>(CRm)};
Inst(Opcode::A32CoprocSendTwoWords, {IR::Value(coproc_info), word1, word2});
Inst(Opcode::A32CoprocSendTwoWords, IR::Value(coproc_info), word1, word2);
}
IR::Value IREmitter::CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2) {
IR::U32 IREmitter::CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -286,19 +286,19 @@ IR::Value IREmitter::CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, A
static_cast<u8>(CRn),
static_cast<u8>(CRm),
static_cast<u8>(opc2)};
return Inst(Opcode::A32CoprocGetOneWord, {IR::Value(coproc_info)});
return Inst<IR::U32>(Opcode::A32CoprocGetOneWord, IR::Value(coproc_info));
}
IR::Value IREmitter::CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm) {
IR::U64 IREmitter::CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
static_cast<u8>(opc),
static_cast<u8>(CRm)};
return Inst(Opcode::A32CoprocGetTwoWords, {IR::Value(coproc_info)});
return Inst<IR::U64>(Opcode::A32CoprocGetTwoWords, IR::Value(coproc_info));
}
void IREmitter::CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option) {
void IREmitter::CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -306,10 +306,10 @@ void IREmitter::CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer,
static_cast<u8>(CRd),
static_cast<u8>(has_option ? 1 : 0),
static_cast<u8>(option)};
Inst(Opcode::A32CoprocLoadWords, {IR::Value(coproc_info), address});
Inst(Opcode::A32CoprocLoadWords, IR::Value(coproc_info), address);
}
void IREmitter::CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option) {
void IREmitter::CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -317,7 +317,7 @@ void IREmitter::CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer,
static_cast<u8>(CRd),
static_cast<u8>(has_option ? 1 : 0),
static_cast<u8>(option)};
Inst(Opcode::A32CoprocStoreWords, {IR::Value(coproc_info), address});
Inst(Opcode::A32CoprocStoreWords, IR::Value(coproc_info), address);
}
} // namespace IR

View file

@ -26,65 +26,65 @@ namespace A32 {
*/
class IREmitter : public IR::IREmitter {
public:
explicit IREmitter(A32::LocationDescriptor descriptor) : IR::IREmitter(descriptor), current_location(descriptor) {}
explicit IREmitter(LocationDescriptor descriptor) : IR::IREmitter(descriptor), current_location(descriptor) {}
A32::LocationDescriptor current_location;
LocationDescriptor current_location;
u32 PC();
u32 AlignPC(size_t alignment);
IR::Value GetRegister(A32::Reg source_reg);
IR::Value GetExtendedRegister(A32::ExtReg source_reg);
void SetRegister(const A32::Reg dest_reg, const IR::Value& value);
void SetExtendedRegister(const A32::ExtReg dest_reg, const IR::Value& value);
IR::U32 GetRegister(Reg source_reg);
IR::F32F64 GetExtendedRegister(ExtReg source_reg);
void SetRegister(const Reg dest_reg, const IR::U32& value);
void SetExtendedRegister(const ExtReg dest_reg, const IR::F32F64& value);
void ALUWritePC(const IR::Value& value);
void BranchWritePC(const IR::Value& value);
void BXWritePC(const IR::Value& value);
void LoadWritePC(const IR::Value& value);
void CallSupervisor(const IR::Value& value);
void ALUWritePC(const IR::U32& value);
void BranchWritePC(const IR::U32& value);
void BXWritePC(const IR::U32& value);
void LoadWritePC(const IR::U32& value);
void CallSupervisor(const IR::U32& value);
IR::Value GetCpsr();
void SetCpsr(const IR::Value& value);
void SetCpsrNZCV(const IR::Value& value);
void SetCpsrNZCVQ(const IR::Value& value);
IR::Value GetCFlag();
void SetNFlag(const IR::Value& value);
void SetZFlag(const IR::Value& value);
void SetCFlag(const IR::Value& value);
void SetVFlag(const IR::Value& value);
void OrQFlag(const IR::Value& value);
IR::Value GetGEFlags();
void SetGEFlags(const IR::Value& value);
void SetGEFlagsCompressed(const IR::Value& value);
IR::U32 GetCpsr();
void SetCpsr(const IR::U32& value);
void SetCpsrNZCV(const IR::U32& value);
void SetCpsrNZCVQ(const IR::U32& value);
IR::U1 GetCFlag();
void SetNFlag(const IR::U1& value);
void SetZFlag(const IR::U1& value);
void SetCFlag(const IR::U1& value);
void SetVFlag(const IR::U1& value);
void OrQFlag(const IR::U1& value);
IR::U32 GetGEFlags();
void SetGEFlags(const IR::U32& value);
void SetGEFlagsCompressed(const IR::U32& value);
IR::Value GetFpscr();
void SetFpscr(const IR::Value& new_fpscr);
IR::Value GetFpscrNZCV();
void SetFpscrNZCV(const IR::Value& new_fpscr_nzcv);
IR::U32 GetFpscr();
void SetFpscr(const IR::U32& new_fpscr);
IR::U32 GetFpscrNZCV();
void SetFpscrNZCV(const IR::U32& new_fpscr_nzcv);
void ClearExclusive();
void SetExclusive(const IR::Value& vaddr, size_t byte_size);
IR::Value ReadMemory8(const IR::Value& vaddr);
IR::Value ReadMemory16(const IR::Value& vaddr);
IR::Value ReadMemory32(const IR::Value& vaddr);
IR::Value ReadMemory64(const IR::Value& vaddr);
void WriteMemory8(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory16(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory32(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory64(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi);
void SetExclusive(const IR::U32& vaddr, size_t byte_size);
IR::U8 ReadMemory8(const IR::U32& vaddr);
IR::U16 ReadMemory16(const IR::U32& vaddr);
IR::U32 ReadMemory32(const IR::U32& vaddr);
IR::U64 ReadMemory64(const IR::U32& vaddr);
void WriteMemory8(const IR::U32& vaddr, const IR::U8& value);
void WriteMemory16(const IR::U32& vaddr, const IR::U16& value);
void WriteMemory32(const IR::U32& vaddr, const IR::U32& value);
void WriteMemory64(const IR::U32& vaddr, const IR::U64& value);
IR::U32 ExclusiveWriteMemory8(const IR::U32& vaddr, const IR::U8& value);
IR::U32 ExclusiveWriteMemory16(const IR::U32& vaddr, const IR::U16& value);
IR::U32 ExclusiveWriteMemory32(const IR::U32& vaddr, const IR::U32& value);
IR::U32 ExclusiveWriteMemory64(const IR::U32& vaddr, const IR::U32& value_lo, const IR::U32& value_hi);
void CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRd, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2);
void CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2, const IR::Value& word);
void CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm, const IR::Value& word1, const IR::Value& word2);
IR::Value CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2);
IR::Value CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm);
void CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option);
void CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option);
void CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, CoprocReg CRd, CoprocReg CRn, CoprocReg CRm, size_t opc2);
void CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2, const IR::U32& word);
void CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm, const IR::U32& word1, const IR::U32& word2);
IR::U32 CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2);
IR::U64 CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm);
void CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option);
void CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option);
};
} // namespace IR

View file

@ -121,7 +121,7 @@ bool ArmTranslatorVisitor::UnpredictableInstruction() {
return false;
}
A32::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in) {
IR::ResultAndCarry<IR::U32> ArmTranslatorVisitor::EmitImmShift(IR::U32 value, ShiftType type, Imm5 imm5, IR::U1 carry_in) {
switch (type) {
case ShiftType::LSL:
return ir.LogicalShiftLeft(value, ir.Imm8(imm5), carry_in);
@ -141,7 +141,7 @@ A32::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value valu
return {};
}
A32::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in) {
IR::ResultAndCarry<IR::U32> ArmTranslatorVisitor::EmitRegShift(IR::U32 value, ShiftType type, IR::U8 amount, IR::U1 carry_in) {
switch (type) {
case ShiftType::LSL:
return ir.LogicalShiftLeft(value, amount, carry_in);

View file

@ -9,7 +9,7 @@
namespace Dynarmic {
namespace A32 {
static IR::Value Rotate(A32::IREmitter& ir, Reg m, SignExtendRotation rotate) {
static IR::U32 Rotate(A32::IREmitter& ir, Reg m, SignExtendRotation rotate) {
const u8 rotate_by = static_cast<u8>(static_cast<size_t>(rotate) * 8);
return ir.RotateRight(ir.GetRegister(m), ir.Imm8(rotate_by), ir.Imm1(0)).result;
}

View file

@ -41,7 +41,7 @@ bool ArmTranslatorVisitor::arm_STRT() {
ASSERT_MSG(false, "System instructions unimplemented");
}
static IR::Value GetAddress(A32::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value offset) {
static IR::U32 GetAddress(A32::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::U32 offset) {
const bool index = P;
const bool add = U;
const bool wback = !P || W;
@ -608,7 +608,7 @@ bool ArmTranslatorVisitor::arm_STRH_reg(Cond cond, bool P, bool U, bool W, Reg n
return true;
}
static bool LDMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
static bool LDMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::U32 start_address, IR::U32 writeback_address) {
auto address = start_address;
for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) {
@ -686,7 +686,7 @@ bool ArmTranslatorVisitor::arm_LDM_eret() {
return InterpretThisInstruction();
}
static bool STMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
static bool STMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::U32 start_address, IR::U32 writeback_address) {
auto address = start_address;
for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) {

View file

@ -211,8 +211,7 @@ bool ArmTranslatorVisitor::arm_SMLAWy(Cond cond, Reg d, Reg a, Reg m, bool M, Re
auto m32 = ir.GetRegister(m);
if (M)
m32 = ir.LogicalShiftRight(m32, ir.Imm8(16), ir.Imm1(0)).result;
auto m16 = ir.LeastSignificantHalf(m32);
m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(m16));
auto m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(ir.LeastSignificantHalf(m32)));
auto product = ir.LeastSignificantWord(ir.LogicalShiftRight64(ir.Mul64(n32, m16), ir.Imm8(16)));
auto result_overflow = ir.AddWithCarry(product, ir.GetRegister(a), ir.Imm1(0));
ir.SetRegister(d, result_overflow.result);
@ -229,8 +228,7 @@ bool ArmTranslatorVisitor::arm_SMULWy(Cond cond, Reg d, Reg m, bool M, Reg n) {
auto m32 = ir.GetRegister(m);
if (M)
m32 = ir.LogicalShiftRight(m32, ir.Imm8(16), ir.Imm1(0)).result;
auto m16 = ir.LeastSignificantHalf(m32);
m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(m16));
auto m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(ir.LeastSignificantHalf(m32)));
auto result = ir.LogicalShiftRight64(ir.Mul64(n32, m16), ir.Imm8(16));
ir.SetRegister(d, ir.LeastSignificantWord(result));
}

View file

@ -9,11 +9,11 @@
namespace Dynarmic {
namespace A32 {
static IR::Value Pack2x16To1x32(A32::IREmitter& ir, IR::Value lo, IR::Value hi) {
static IR::U32 Pack2x16To1x32(A32::IREmitter& ir, IR::U32 lo, IR::U32 hi) {
return ir.Or(ir.And(lo, ir.Imm32(0xFFFF)), ir.LogicalShiftLeft(hi, ir.Imm8(16), ir.Imm1(0)).result);
}
static IR::Value MostSignificantHalf(A32::IREmitter& ir, IR::Value value) {
static IR::U16 MostSignificantHalf(A32::IREmitter& ir, IR::U32 value) {
return ir.LeastSignificantHalf(ir.LogicalShiftRight(value, ir.Imm8(16), ir.Imm1(0)).result);
}

View file

@ -49,10 +49,10 @@ struct ArmTranslatorVisitor final {
struct ImmAndCarry {
u32 imm32;
IR::Value carry;
IR::U1 carry;
};
ImmAndCarry ArmExpandImm_C(int rotate, u32 imm8, IR::Value carry_in) {
ImmAndCarry ArmExpandImm_C(int rotate, u32 imm8, IR::U1 carry_in) {
u32 imm32 = imm8;
auto carry_out = carry_in;
if (rotate) {
@ -62,8 +62,8 @@ struct ArmTranslatorVisitor final {
return {imm32, carry_out};
}
A32::IREmitter::ResultAndCarry EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in);
A32::IREmitter::ResultAndCarry EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in);
IR::ResultAndCarry<IR::U32> EmitImmShift(IR::U32 value, ShiftType type, Imm5 imm5, IR::U1 carry_in);
IR::ResultAndCarry<IR::U32> EmitRegShift(IR::U32 value, ShiftType type, IR::U8 amount, IR::U1 carry_in);
template <typename FnT> bool EmitVfpVectorOperation(bool sz, ExtReg d, ExtReg n, ExtReg m, const FnT& fn);
template <typename FnT> bool EmitVfpVectorOperation(bool sz, ExtReg d, ExtReg m, const FnT& fn);

View file

@ -9,6 +9,9 @@
namespace Dynarmic {
namespace A32 {
using F32 = IR::F32;
using F64 = IR::F64;
static ExtReg ToExtReg(bool sz, size_t base, bool bit) {
if (sz) {
return static_cast<ExtReg>(static_cast<size_t>(ExtReg::D0) + base + (bit ? 16 : 0));
@ -99,10 +102,13 @@ bool ArmTranslatorVisitor::vfp2_VADD(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPAdd64(reg_n, reg_m, true)
: ir.FPAdd32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPAdd64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -117,10 +123,13 @@ bool ArmTranslatorVisitor::vfp2_VSUB(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPSub64(reg_n, reg_m, true)
: ir.FPSub32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPSub64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPSub32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -135,10 +144,13 @@ bool ArmTranslatorVisitor::vfp2_VMUL(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPMul64(reg_n, reg_m, true)
: ir.FPMul32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPMul64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPMul32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -154,10 +166,13 @@ bool ArmTranslatorVisitor::vfp2_VMLA(Cond cond, bool D, size_t Vn, size_t Vd, bo
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(reg_d, ir.FPMul64(reg_n, reg_m, true), true)
: ir.FPAdd32(reg_d, ir.FPMul32(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPAdd64(reg_d, ir.FPMul64(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(reg_d, ir.FPMul32(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -173,10 +188,13 @@ bool ArmTranslatorVisitor::vfp2_VMLS(Cond cond, bool D, size_t Vn, size_t Vd, bo
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(reg_d, ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true)
: ir.FPAdd32(reg_d, ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPAdd64(reg_d, ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(reg_d, ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -191,10 +209,13 @@ bool ArmTranslatorVisitor::vfp2_VNMUL(Cond cond, bool D, size_t Vn, size_t Vd, b
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true))
: ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true));
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true));
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true));
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -210,10 +231,13 @@ bool ArmTranslatorVisitor::vfp2_VNMLA(Cond cond, bool D, size_t Vn, size_t Vd, b
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true)
: ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -229,10 +253,13 @@ bool ArmTranslatorVisitor::vfp2_VNMLS(Cond cond, bool D, size_t Vn, size_t Vd, b
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPMul64(reg_n, reg_m, true), true)
: ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPMul32(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPMul64(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPMul32(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -247,10 +274,13 @@ bool ArmTranslatorVisitor::vfp2_VDIV(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPDiv64(reg_n, reg_m, true)
: ir.FPDiv32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPDiv64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPDiv32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -379,10 +409,13 @@ bool ArmTranslatorVisitor::vfp2_VABS(Cond cond, bool D, size_t Vd, bool sz, bool
if (ConditionPassed(cond)) {
return EmitVfpVectorOperation(sz, d, m, [sz, this](ExtReg d, ExtReg m) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPAbs64(reg_m)
: ir.FPAbs32(reg_m);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPAbs64(reg_m);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAbs32(reg_m);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -395,10 +428,13 @@ bool ArmTranslatorVisitor::vfp2_VNEG(Cond cond, bool D, size_t Vd, bool sz, bool
if (ConditionPassed(cond)) {
return EmitVfpVectorOperation(sz, d, m, [sz, this](ExtReg d, ExtReg m) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPNeg64(reg_m)
: ir.FPNeg32(reg_m);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPNeg64(reg_m);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPNeg32(reg_m);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -411,10 +447,13 @@ bool ArmTranslatorVisitor::vfp2_VSQRT(Cond cond, bool D, size_t Vd, bool sz, boo
if (ConditionPassed(cond)) {
return EmitVfpVectorOperation(sz, d, m, [sz, this](ExtReg d, ExtReg m) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPSqrt64(reg_m)
: ir.FPSqrt32(reg_m);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPSqrt64(reg_m);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPSqrt32(reg_m);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -427,10 +466,13 @@ bool ArmTranslatorVisitor::vfp2_VCVT_f_to_f(Cond cond, bool D, size_t Vd, bool s
// VCVT.F32.F64 <Dd> <Sm>
if (ConditionPassed(cond)) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPDoubleToSingle(reg_m, true)
: ir.FPSingleToDouble(reg_m, true);
ir.SetExtendedRegister(d, result);
if (sz) {
auto result = ir.FPDoubleToSingle(reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPSingleToDouble(reg_m, true);
ir.SetExtendedRegister(d, result);
}
}
return true;
}
@ -443,14 +485,17 @@ bool ArmTranslatorVisitor::vfp2_VCVT_to_float(Cond cond, bool D, size_t Vd, bool
// VCVT.F64.{S32,U32} <Sd>, <Dm>
if (ConditionPassed(cond)) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? is_signed
if (sz) {
auto result = is_signed
? ir.FPS32ToDouble(reg_m, round_to_nearest, true)
: ir.FPU32ToDouble(reg_m, round_to_nearest, true)
: is_signed
: ir.FPU32ToDouble(reg_m, round_to_nearest, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = is_signed
? ir.FPS32ToSingle(reg_m, round_to_nearest, true)
: ir.FPU32ToSingle(reg_m, round_to_nearest, true);
ir.SetExtendedRegister(d, result);
ir.SetExtendedRegister(d, result);
}
}
return true;
}
@ -510,12 +555,11 @@ bool ArmTranslatorVisitor::vfp2_VCMP_zero(Cond cond, bool D, size_t Vd, bool sz,
// VCMP{E}.F64 <Dd>, #0.0
if (ConditionPassed(cond)) {
auto reg_d = ir.GetExtendedRegister(d);
auto zero = sz
? ir.TransferToFP64(ir.Imm64(0))
: ir.TransferToFP32(ir.Imm32(0));
if (sz) {
auto zero = ir.TransferToFP64(ir.Imm64(0));
ir.FPCompare64(reg_d, zero, exc_on_qnan, true);
} else {
auto zero = ir.TransferToFP32(ir.Imm32(0));
ir.FPCompare32(reg_d, zero, exc_on_qnan, true);
}
}