IR: Initial implementation of FP{Double,Single}ToFixed{S,U}{32,64}

This implementation just falls-back to the software floating point implementation.
This commit is contained in:
MerryMage 2018-06-30 10:49:47 +01:00
parent 760cc3ca89
commit caaf36dfd6
12 changed files with 159 additions and 173 deletions

View file

@ -442,8 +442,8 @@ bool ArmTranslatorVisitor::vfp2_VCVT_to_u32(Cond cond, bool D, size_t Vd, bool s
if (ConditionPassed(cond)) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPDoubleToU32(reg_m, round_towards_zero, true)
: ir.FPSingleToU32(reg_m, round_towards_zero, true);
? ir.FPDoubleToFixedU32(reg_m, 0, round_towards_zero ? FP::RoundingMode::TowardsZero : ir.current_location.FPSCR().RMode())
: ir.FPSingleToFixedU32(reg_m, 0, round_towards_zero ? FP::RoundingMode::TowardsZero : ir.current_location.FPSCR().RMode());
ir.SetExtendedRegister(d, result);
}
return true;
@ -457,8 +457,8 @@ bool ArmTranslatorVisitor::vfp2_VCVT_to_s32(Cond cond, bool D, size_t Vd, bool s
if (ConditionPassed(cond)) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPDoubleToS32(reg_m, round_towards_zero, true)
: ir.FPSingleToS32(reg_m, round_towards_zero, true);
? ir.FPDoubleToFixedS32(reg_m, 0, round_towards_zero ? FP::RoundingMode::TowardsZero : ir.current_location.FPSCR().RMode())
: ir.FPSingleToFixedS32(reg_m, 0, round_towards_zero ? FP::RoundingMode::TowardsZero : ir.current_location.FPSCR().RMode());
ir.SetExtendedRegister(d, result);
}
return true;

View file

@ -38,13 +38,13 @@ bool TranslatorVisitor::FCVTZS_float_fix(bool sf, Imm<2> type, Imm<6> scale, Vec
IR::U32U64 intval;
if (intsize == 32 && *fltsize == 32) {
intval = ir.FPSingleToS32(fltval, true, true);
intval = ir.FPSingleToFixedS32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 32 && *fltsize == 64) {
intval = ir.FPDoubleToS32(fltval, true, true);
intval = ir.FPDoubleToFixedS32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 32) {
return InterpretThisInstruction();
intval = ir.FPSingleToFixedS64(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 64) {
return InterpretThisInstruction();
intval = ir.FPDoubleToFixedS64(fltval, 0, FP::RoundingMode::TowardsZero);
} else {
UNREACHABLE();
}
@ -69,13 +69,13 @@ bool TranslatorVisitor::FCVTZU_float_fix(bool sf, Imm<2> type, Imm<6> scale, Vec
IR::U32U64 intval;
if (intsize == 32 && *fltsize == 32) {
intval = ir.FPSingleToU32(fltval, true, true);
intval = ir.FPSingleToFixedU32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 32 && *fltsize == 64) {
intval = ir.FPDoubleToU32(fltval, true, true);
intval = ir.FPDoubleToFixedU32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 32) {
return InterpretThisInstruction();
intval = ir.FPSingleToFixedU64(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 64) {
return InterpretThisInstruction();
intval = ir.FPDoubleToFixedU64(fltval, 0, FP::RoundingMode::TowardsZero);
} else {
UNREACHABLE();
}

View file

@ -146,13 +146,13 @@ bool TranslatorVisitor::FCVTZS_float_int(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
IR::U32U64 intval;
if (intsize == 32 && *fltsize == 32) {
intval = ir.FPSingleToS32(fltval, true, true);
intval = ir.FPSingleToFixedS32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 32 && *fltsize == 64) {
intval = ir.FPDoubleToS32(fltval, true, true);
intval = ir.FPDoubleToFixedS32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 32) {
return InterpretThisInstruction();
intval = ir.FPSingleToFixedS64(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 64) {
return InterpretThisInstruction();
intval = ir.FPDoubleToFixedS64(fltval, 0, FP::RoundingMode::TowardsZero);
} else {
UNREACHABLE();
}
@ -173,13 +173,13 @@ bool TranslatorVisitor::FCVTZU_float_int(bool sf, Imm<2> type, Vec Vn, Reg Rd) {
IR::U32U64 intval;
if (intsize == 32 && *fltsize == 32) {
intval = ir.FPSingleToU32(fltval, true, true);
intval = ir.FPSingleToFixedU32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 32 && *fltsize == 64) {
intval = ir.FPDoubleToU32(fltval, true, true);
intval = ir.FPDoubleToFixedU32(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 32) {
return InterpretThisInstruction();
intval = ir.FPSingleToFixedU64(fltval, 0, FP::RoundingMode::TowardsZero);
} else if (intsize == 64 && *fltsize == 64) {
return InterpretThisInstruction();
intval = ir.FPDoubleToFixedU64(fltval, 0, FP::RoundingMode::TowardsZero);
} else {
UNREACHABLE();
}

View file

@ -1451,24 +1451,44 @@ U64 IREmitter::FPSingleToDouble(const U32& a, bool fpscr_controlled) {
return Inst<U64>(Opcode::FPSingleToDouble, a);
}
U32 IREmitter::FPSingleToS32(const U32& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst<U32>(Opcode::FPSingleToS32, a, Imm1(round_towards_zero));
U32 IREmitter::FPDoubleToFixedS32(const U64& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 32);
return Inst<U32>(Opcode::FPDoubleToFixedS32, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U32 IREmitter::FPSingleToU32(const U32& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst<U32>(Opcode::FPSingleToU32, a, Imm1(round_towards_zero));
U64 IREmitter::FPDoubleToFixedS64(const U64& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 64);
return Inst<U64>(Opcode::FPDoubleToFixedS64, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U32 IREmitter::FPDoubleToS32(const U64& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst<U32>(Opcode::FPDoubleToS32, a, Imm1(round_towards_zero));
U32 IREmitter::FPDoubleToFixedU32(const U64& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 32);
return Inst<U32>(Opcode::FPDoubleToFixedU32, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U32 IREmitter::FPDoubleToU32(const U64& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst<U32>(Opcode::FPDoubleToU32, a, Imm1(round_towards_zero));
U64 IREmitter::FPDoubleToFixedU64(const U64& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 64);
return Inst<U64>(Opcode::FPDoubleToFixedU64, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U32 IREmitter::FPSingleToFixedS32(const U32& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 32);
return Inst<U32>(Opcode::FPSingleToFixedS32, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U64 IREmitter::FPSingleToFixedS64(const U32& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 64);
return Inst<U64>(Opcode::FPSingleToFixedS64, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U32 IREmitter::FPSingleToFixedU32(const U32& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 32);
return Inst<U32>(Opcode::FPSingleToFixedU32, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U64 IREmitter::FPSingleToFixedU64(const U32& a, size_t fbits, FP::RoundingMode rounding) {
ASSERT(fbits <= 64);
return Inst<U64>(Opcode::FPSingleToFixedU64, a, Imm8(static_cast<u8>(fbits)), Imm8(static_cast<u8>(rounding)));
}
U32 IREmitter::FPS32ToSingle(const U32& a, bool round_to_nearest, bool fpscr_controlled) {

View file

@ -12,6 +12,10 @@
#include "frontend/ir/terminal.h"
#include "frontend/ir/value.h"
namespace Dynarmic::FP {
enum class RoundingMode;
} // namespace Dynarmic::FP
// ARM JIT Microinstruction Intermediate Representation
//
// This intermediate representation is an SSA IR. It is designed primarily for analysis,
@ -264,10 +268,14 @@ public:
U32U64 FPSub(const U32U64& a, const U32U64& b, bool fpscr_controlled);
U32 FPDoubleToSingle(const U64& a, bool fpscr_controlled);
U64 FPSingleToDouble(const U32& a, bool fpscr_controlled);
U32 FPSingleToS32(const U32& a, bool round_towards_zero, bool fpscr_controlled);
U32 FPSingleToU32(const U32& a, bool round_towards_zero, bool fpscr_controlled);
U32 FPDoubleToS32(const U64& a, bool round_towards_zero, bool fpscr_controlled);
U32 FPDoubleToU32(const U64& a, bool round_towards_zero, bool fpscr_controlled);
U32 FPDoubleToFixedS32(const U64& a, size_t fbits, FP::RoundingMode rounding);
U64 FPDoubleToFixedS64(const U64& a, size_t fbits, FP::RoundingMode rounding);
U32 FPDoubleToFixedU32(const U64& a, size_t fbits, FP::RoundingMode rounding);
U64 FPDoubleToFixedU64(const U64& a, size_t fbits, FP::RoundingMode rounding);
U32 FPSingleToFixedS32(const U32& a, size_t fbits, FP::RoundingMode rounding);
U64 FPSingleToFixedS64(const U32& a, size_t fbits, FP::RoundingMode rounding);
U32 FPSingleToFixedU32(const U32& a, size_t fbits, FP::RoundingMode rounding);
U64 FPSingleToFixedU64(const U32& a, size_t fbits, FP::RoundingMode rounding);
U32 FPS32ToSingle(const U32& a, bool round_to_nearest, bool fpscr_controlled);
U32 FPU32ToSingle(const U32& a, bool round_to_nearest, bool fpscr_controlled);
U64 FPS32ToDouble(const U32& a, bool round_to_nearest, bool fpscr_controlled);

View file

@ -386,10 +386,14 @@ OPCODE(FPSub64, T::U64, T::U64, T::U
// Floating-point conversions
OPCODE(FPSingleToDouble, T::U64, T::U32 )
OPCODE(FPDoubleToSingle, T::U32, T::U64 )
OPCODE(FPSingleToU32, T::U32, T::U32, T::U1 )
OPCODE(FPSingleToS32, T::U32, T::U32, T::U1 )
OPCODE(FPDoubleToU32, T::U32, T::U64, T::U1 )
OPCODE(FPDoubleToS32, T::U32, T::U64, T::U1 )
OPCODE(FPDoubleToFixedS32, T::U32, T::U64, T::U8, T::U8 )
OPCODE(FPDoubleToFixedS64, T::U64, T::U64, T::U8, T::U8 )
OPCODE(FPDoubleToFixedU32, T::U32, T::U64, T::U8, T::U8 )
OPCODE(FPDoubleToFixedU64, T::U64, T::U64, T::U8, T::U8 )
OPCODE(FPSingleToFixedS32, T::U32, T::U32, T::U8, T::U8 )
OPCODE(FPSingleToFixedS64, T::U64, T::U32, T::U8, T::U8 )
OPCODE(FPSingleToFixedU32, T::U32, T::U32, T::U8, T::U8 )
OPCODE(FPSingleToFixedU64, T::U64, T::U32, T::U8, T::U8 )
OPCODE(FPU32ToSingle, T::U32, T::U32, T::U1 )
OPCODE(FPS32ToSingle, T::U32, T::U32, T::U1 )
OPCODE(FPU32ToDouble, T::U64, T::U32, T::U1 )