Implement VCVT

This commit is contained in:
MerryMage 2016-08-23 22:04:46 +01:00
parent 445aad0639
commit b5a86889cd
8 changed files with 447 additions and 3 deletions

View file

@ -1211,6 +1211,13 @@ static void DefaultNaN64(BlockOfCode* code, X64Reg xmm_value) {
code->SetJumpTarget(fixup);
}
static void ZeroIfNaN64(BlockOfCode* code, X64Reg xmm_value) {
code->UCOMISD(xmm_value, R(xmm_value));
auto fixup = code->J_CC(CC_NP);
code->MOVAPS(xmm_value, code->MFloatPositiveZero64());
code->SetJumpTarget(fixup);
}
static void FPThreeOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (XEmitter::*fn)(X64Reg, const OpArg&)) {
IR::Value a = inst->GetArg(0);
IR::Value b = inst->GetArg(1);
@ -1389,6 +1396,283 @@ void EmitX64::EmitFPSub64(IR::Block& block, IR::Inst* inst) {
FPThreeOp64(code, reg_alloc, block, inst, &XEmitter::SUBSD);
}
void EmitX64::EmitFPSingleToDouble(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch);
}
code->CVTSS2SD(result, R(result));
if (block.location.FPSCR_FTZ()) {
FlushToZero64(code, result, gpr_scratch);
}
if (block.location.FPSCR_DN()) {
DefaultNaN64(code, result);
}
}
void EmitX64::EmitFPDoubleToSingle(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch);
}
code->CVTSD2SS(result, R(result));
if (block.location.FPSCR_FTZ()) {
FlushToZero32(code, result, gpr_scratch);
}
if (block.location.FPSCR_DN()) {
DefaultNaN32(code, result);
}
}
void EmitX64::EmitFPSingleToS32(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_towards_zero = inst->GetArg(1).GetU1();
X64Reg from = reg_alloc.UseScratchRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// Conversion to double is lossless, and allows for clamping.
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero32(code, from, gpr_scratch);
}
code->CVTSS2SD(from, R(from));
// First time is to set flags
if (round_towards_zero) {
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
} else {
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
}
// Clamp to output range
ZeroIfNaN64(code, from);
code->MINSD(from, code->MFloatMaxS32());
code->MAXSD(from, code->MFloatMinS32());
// Second time is for real
if (round_towards_zero) {
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
} else {
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
}
code->MOVD_xmm(to, R(gpr_scratch));
}
void EmitX64::EmitFPSingleToU32(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_towards_zero = inst->GetArg(1).GetU1();
X64Reg from = reg_alloc.UseScratchRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// Conversion to double is lossless, and allows for accurate clamping.
//
// Since SSE2 doesn't provide an unsigned conversion, we shift the range as appropriate.
//
// FIXME: Inexact exception not correctly signalled with the below code
if (block.location.FPSCR_RMode() != Arm::FPRoundingMode::RoundTowardsZero && !round_towards_zero) {
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero32(code, from, gpr_scratch);
}
code->CVTSS2SD(from, R(from));
ZeroIfNaN64(code, from);
// Bring into SSE range
code->ADDSD(from, code->MFloatMinS32());
// First time is to set flags
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Clamp to output range
code->MINSD(from, code->MFloatMaxS32());
code->MAXSD(from, code->MFloatMinS32());
// Actually convert
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Bring back into original range
code->ADD(32, R(gpr_scratch), Imm32(2147483648u));
code->MOVQ_xmm(to, R(gpr_scratch));
} else {
X64Reg xmm_mask = reg_alloc.ScratchRegister(any_xmm);
X64Reg gpr_mask = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero32(code, from, gpr_scratch);
}
code->CVTSS2SD(from, R(from));
ZeroIfNaN64(code, from);
// Generate masks if out-of-signed-range
code->MOVAPS(xmm_mask, code->MFloatMaxS32());
code->CMPLTSD(xmm_mask, R(from));
code->MOVQ_xmm(R(gpr_mask), xmm_mask);
code->PAND(xmm_mask, code->MFloatMinS32());
code->AND(32, R(gpr_mask), Imm32(2147483648u));
// Bring into range if necessary
code->ADDSD(from, R(xmm_mask));
// First time is to set flags
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Clamp to output range
code->MINSD(from, code->MFloatMaxS32());
code->MAXSD(from, code->MFloatMinU32());
// Actually convert
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Bring back into original range if necessary
code->ADD(32, R(gpr_scratch), R(gpr_mask));
code->MOVQ_xmm(to, R(gpr_scratch));
}
}
void EmitX64::EmitFPDoubleToS32(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_towards_zero = inst->GetArg(1).GetU1();
X64Reg from = reg_alloc.UseScratchRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch);
}
// First time is to set flags
if (round_towards_zero) {
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
} else {
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
}
// Clamp to output range
ZeroIfNaN64(code, from);
code->MINSD(from, code->MFloatMaxS32());
code->MAXSD(from, code->MFloatMinS32());
// Second time is for real
if (round_towards_zero) {
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
} else {
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
}
code->MOVD_xmm(to, R(gpr_scratch));
}
void EmitX64::EmitFPDoubleToU32(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_towards_zero = inst->GetArg(1).GetU1();
X64Reg from = reg_alloc.UseScratchRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
X64Reg xmm_scratch = reg_alloc.ScratchRegister(any_xmm);
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// TODO: Use VCVTPD2UDQ when AVX512VL is available.
// FIXME: Inexact exception not correctly signalled with the below code
if (block.location.FPSCR_RMode() != Arm::FPRoundingMode::RoundTowardsZero && !round_towards_zero) {
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch);
}
ZeroIfNaN64(code, from);
// Bring into SSE range
code->ADDSD(from, code->MFloatMinS32());
// First time is to set flags
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Clamp to output range
code->MINSD(from, code->MFloatMaxS32());
code->MAXSD(from, code->MFloatMinS32());
// Actually convert
code->CVTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Bring back into original range
code->ADD(32, R(gpr_scratch), Imm32(2147483648u));
code->MOVQ_xmm(to, R(gpr_scratch));
} else {
X64Reg xmm_mask = reg_alloc.ScratchRegister(any_xmm);
X64Reg gpr_mask = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch);
}
ZeroIfNaN64(code, from);
// Generate masks if out-of-signed-range
code->MOVAPS(xmm_mask, code->MFloatMaxS32());
code->CMPLTSD(xmm_mask, R(from));
code->MOVQ_xmm(R(gpr_mask), xmm_mask);
code->PAND(xmm_mask, code->MFloatMinS32());
code->AND(32, R(gpr_mask), Imm32(2147483648u));
// Bring into range if necessary
code->ADDSD(from, R(xmm_mask));
// First time is to set flags
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Clamp to output range
code->MINSD(from, code->MFloatMaxS32());
code->MAXSD(from, code->MFloatMinU32());
// Actually convert
code->CVTTSD2SI(gpr_scratch, R(from)); // 32 bit gpr
// Bring back into original range if necessary
code->ADD(32, R(gpr_scratch), R(gpr_mask));
code->MOVQ_xmm(to, R(gpr_scratch));
}
}
void EmitX64::EmitFPS32ToSingle(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_to_nearest = inst->GetArg(1).GetU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
X64Reg from = reg_alloc.UseRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
code->MOVD_xmm(R(gpr_scratch), from);
code->CVTSI2SS(32, to, R(gpr_scratch));
}
void EmitX64::EmitFPU32ToSingle(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_to_nearest = inst->GetArg(1).GetU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
X64Reg from = reg_alloc.UseRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
code->MOVD_xmm(R(gpr_scratch), from);
code->CVTSI2SS(64, to, R(gpr_scratch));
}
void EmitX64::EmitFPS32ToDouble(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_to_nearest = inst->GetArg(1).GetU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
X64Reg from = reg_alloc.UseRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
code->MOVD_xmm(R(gpr_scratch), from);
code->CVTSI2SD(32, to, R(gpr_scratch));
}
void EmitX64::EmitFPU32ToDouble(IR::Block& block, IR::Inst* inst) {
IR::Value a = inst->GetArg(0);
bool round_to_nearest = inst->GetArg(1).GetU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
X64Reg from = reg_alloc.UseRegister(a, any_xmm);
X64Reg to = reg_alloc.DefRegister(inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
code->MOVD_xmm(R(gpr_scratch), from);
code->CVTSI2SD(64, to, R(gpr_scratch));
}
void EmitX64::EmitClearExclusive(IR::Block&, IR::Inst*) {
code->MOV(8, MDisp(R15, offsetof(JitState, exclusive_state)), Imm8(0));
}