fp: Change FPUnpacked to a normalized representation

Having a known position for the highest set bit makes writing algorithms easier
This commit is contained in:
MerryMage 2018-07-25 17:39:14 +01:00
parent 680395a803
commit 7a673a8a43
10 changed files with 71 additions and 56 deletions

View file

@ -20,15 +20,15 @@ using namespace Dynarmic::FP;
TEST_CASE("FPUnpack Tests", "[fp]") {
const static std::vector<std::tuple<u32, std::tuple<FPType, bool, FPUnpacked>, u32>> test_cases {
{0x00000000, {FPType::Zero, false, {false, 0, 0}}, 0},
{0x7F800000, {FPType::Infinity, false, {false, 1000000, 1}}, 0},
{0xFF800000, {FPType::Infinity, true, {true, 1000000, 1}}, 0},
{0x7F800001, {FPType::SNaN, false, {false, 0, 0}}, 0},
{0xFF800001, {FPType::SNaN, true, {true, 0, 0}}, 0},
{0x7FC00001, {FPType::QNaN, false, {false, 0, 0}}, 0},
{0xFFC00001, {FPType::QNaN, true, {true, 0, 0}}, 0},
{0x00000001, {FPType::Nonzero, false, {false, -149, 1}}, 0}, // Smallest single precision denormal is 2^-149.
{0x3F7FFFFF, {FPType::Nonzero, false, {false, -24, 0xFFFFFF}}, 0}, // 1.0 - epsilon
{0x00000000, {FPType::Zero, false, ToNormalized(false, 0, 0)}, 0},
{0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0},
{0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0},
{0x7F800001, {FPType::SNaN, false, ToNormalized(false, 0, 0)}, 0},
{0xFF800001, {FPType::SNaN, true, ToNormalized(true, 0, 0)}, 0},
{0x7FC00001, {FPType::QNaN, false, ToNormalized(false, 0, 0)}, 0},
{0xFFC00001, {FPType::QNaN, true, ToNormalized(true, 0, 0)}, 0},
{0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149.
{0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon
};
const FPCR fpcr;
@ -37,6 +37,13 @@ TEST_CASE("FPUnpack Tests", "[fp]") {
const auto output = FPUnpack<u32>(input, fpcr, fpsr);
INFO("Input: " << std::hex << input);
INFO("Output Sign: " << std::get<2>(output).sign);
INFO("Output Exponent: " << std::get<2>(output).exponent);
INFO("Output Mantissa: " << std::hex << std::get<2>(output).mantissa);
INFO("Expected Sign: " << std::get<2>(expected_output).sign);
INFO("Expected Exponent: " << std::get<2>(expected_output).exponent);
INFO("Expected Mantissa: " << std::hex << std::get<2>(expected_output).mantissa);
REQUIRE(output == expected_output);
REQUIRE(fpsr.Value() == expected_fpsr);
}
@ -44,11 +51,11 @@ TEST_CASE("FPUnpack Tests", "[fp]") {
TEST_CASE("FPRound Tests", "[fp]") {
const static std::vector<std::tuple<u32, std::tuple<FPType, bool, FPUnpacked>, u32>> test_cases {
{0x7F800000, {FPType::Infinity, false, {false, 1000000, 1}}, 0x14},
{0xFF800000, {FPType::Infinity, true, {true, 1000000, 1}}, 0x14},
{0x00000001, {FPType::Nonzero, false, {false, -149, 1}}, 0}, // Smallest single precision denormal is 2^-149.
{0x3F7FFFFF, {FPType::Nonzero, false, {false, -24, 0xFFFFFF}}, 0}, // 1.0 - epsilon
{0x3F800000, {FPType::Nonzero, false, {false, -28, 0xFFFFFFF}}, 0x10}, // rounds to 1.0
{0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0x14},
{0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0x14},
{0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149.
{0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon
{0x3F800000, {FPType::Nonzero, false, ToNormalized(false, -28, 0xFFFFFFF)}, 0x10}, // rounds to 1.0
};
const FPCR fpcr;