breakpad/src/tools/linux/md2core/minidump-2-core.cc
nealsid b0baafc4da Merge of Breakpad Chrome Linux fork
A=agl, Lei Zhang
R=nealsid, agl



git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@384 4c0a9323-5329-0410-9bdc-e9ce6186880e
2009-08-17 23:12:53 +00:00

602 lines
20 KiB
C++

// Copyright (c) 2009, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Converts a minidump file to a core file which gdb can read.
// Large parts lifted from the userspace core dumper:
// http://code.google.com/p/google-coredumper/
//
// Usage: minidump-2-core 1234.dmp > core
#include <vector>
#include <stdio.h>
#include <string.h>
#include <elf.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/user.h>
#include <sys/mman.h>
#include "google_breakpad/common/minidump_format.h"
#include "google_breakpad/common/minidump_cpu_x86.h"
#include "breakpad/linux/minidump_format_linux.h"
#if __WORDSIZE == 64
#define ELF_CLASS ELFCLASS64
#define Ehdr Elf64_Ehdr
#define Phdr Elf64_Phdr
#define Shdr Elf64_Shdr
#define Nhdr Elf64_Nhdr
#define auxv_t Elf64_auxv_t
#else
#define ELF_CLASS ELFCLASS32
#define Ehdr Elf32_Ehdr
#define Phdr Elf32_Phdr
#define Shdr Elf32_Shdr
#define Nhdr Elf32_Nhdr
#define auxv_t Elf32_auxv_t
#endif
#if defined(__x86_64__)
#define ELF_ARCH EM_X86_64
#elif defined(__i386__)
#define ELF_ARCH EM_386
#elif defined(__ARM_ARCH_3__)
#define ELF_ARCH EM_ARM
#elif defined(__mips__)
#define ELF_ARCH EM_MIPS
#endif
static int usage(const char* argv0) {
fprintf(stderr, "Usage: %s <minidump file>\n", argv0);
return 1;
}
// Write all of the given buffer, handling short writes and EINTR. Return true
// iff successful.
static bool
writea(int fd, const void* idata, size_t length) {
const uint8_t* data = (const uint8_t*) idata;
size_t done = 0;
while (done < length) {
ssize_t r;
do {
r = write(fd, data + done, length - done);
} while (r == -1 && errno == EINTR);
if (r < 1)
return false;
done += r;
}
return true;
}
// A range of a mmaped file.
class MMappedRange {
public:
MMappedRange(const void* data, size_t length)
: data_(reinterpret_cast<const uint8_t*>(data)),
length_(length) {
}
// Get an object of |length| bytes at |offset| and return a pointer to it
// unless it's out of bounds.
const void* GetObject(size_t offset, size_t length) {
if (offset + length < offset)
return NULL;
if (offset + length > length_)
return NULL;
return data_ + offset;
}
// Get element |index| of an array of objects of length |length| starting at
// |offset| bytes. Return NULL if out of bounds.
const void* GetArrayElement(size_t offset, size_t length, unsigned index) {
const size_t element_offset = offset + index * length;
return GetObject(element_offset, length);
}
// Return a new range which is a subset of this range.
MMappedRange Subrange(const MDLocationDescriptor& location) const {
if (location.rva > length_ ||
location.rva + location.data_size < location.rva ||
location.rva + location.data_size > length_) {
return MMappedRange(NULL, 0);
}
return MMappedRange(data_ + location.rva, location.data_size);
}
const uint8_t* data() const { return data_; }
size_t length() const { return length_; }
private:
const uint8_t* const data_;
const size_t length_;
};
/* Dynamically determines the byte sex of the system. Returns non-zero
* for big-endian machines.
*/
static inline int sex() {
int probe = 1;
return !*(char *)&probe;
}
typedef struct elf_timeval { /* Time value with microsecond resolution */
long tv_sec; /* Seconds */
long tv_usec; /* Microseconds */
} elf_timeval;
typedef struct elf_siginfo { /* Information about signal (unused) */
int32_t si_signo; /* Signal number */
int32_t si_code; /* Extra code */
int32_t si_errno; /* Errno */
} elf_siginfo;
typedef struct prstatus { /* Information about thread; includes CPU reg*/
elf_siginfo pr_info; /* Info associated with signal */
uint16_t pr_cursig; /* Current signal */
unsigned long pr_sigpend; /* Set of pending signals */
unsigned long pr_sighold; /* Set of held signals */
pid_t pr_pid; /* Process ID */
pid_t pr_ppid; /* Parent's process ID */
pid_t pr_pgrp; /* Group ID */
pid_t pr_sid; /* Session ID */
elf_timeval pr_utime; /* User time */
elf_timeval pr_stime; /* System time */
elf_timeval pr_cutime; /* Cumulative user time */
elf_timeval pr_cstime; /* Cumulative system time */
user_regs_struct pr_reg; /* CPU registers */
uint32_t pr_fpvalid; /* True if math co-processor being used */
} prstatus;
typedef struct prpsinfo { /* Information about process */
unsigned char pr_state; /* Numeric process state */
char pr_sname; /* Char for pr_state */
unsigned char pr_zomb; /* Zombie */
signed char pr_nice; /* Nice val */
unsigned long pr_flag; /* Flags */
#if defined(__x86_64__) || defined(__mips__)
uint32_t pr_uid; /* User ID */
uint32_t pr_gid; /* Group ID */
#else
uint16_t pr_uid; /* User ID */
uint16_t pr_gid; /* Group ID */
#endif
pid_t pr_pid; /* Process ID */
pid_t pr_ppid; /* Parent's process ID */
pid_t pr_pgrp; /* Group ID */
pid_t pr_sid; /* Session ID */
char pr_fname[16]; /* Filename of executable */
char pr_psargs[80]; /* Initial part of arg list */
} prpsinfo;
// We parse the minidump file and keep the parsed information in this structure.
struct CrashedProcess {
CrashedProcess()
: crashing_tid(-1),
auxv(NULL),
auxv_length(0) {
memset(&prps, 0, sizeof(prps));
prps.pr_sname = 'R';
}
struct Mapping {
uint64_t start_address, end_address;
};
std::vector<Mapping> mappings;
pid_t crashing_tid;
int fatal_signal;
struct Thread {
pid_t tid;
user_regs_struct regs;
user_fpregs_struct fpregs;
user_fpxregs_struct fpxregs;
uintptr_t stack_addr;
const uint8_t* stack;
size_t stack_length;
};
std::vector<Thread> threads;
const uint8_t* auxv;
size_t auxv_length;
prpsinfo prps;
};
static uint32_t
U32(const uint8_t* data) {
uint32_t v;
memcpy(&v, data, sizeof(v));
return v;
}
static uint16_t
U16(const uint8_t* data) {
uint16_t v;
memcpy(&v, data, sizeof(v));
return v;
}
#if defined(__i386__)
static void
ParseThreadRegisters(CrashedProcess::Thread* thread, MMappedRange range) {
const MDRawContextX86* rawregs =
(const MDRawContextX86*) range.GetObject(0, sizeof(MDRawContextX86));
thread->regs.ebx = rawregs->ebx;
thread->regs.ecx = rawregs->ecx;
thread->regs.edx = rawregs->edx;
thread->regs.esi = rawregs->esi;
thread->regs.edi = rawregs->edi;
thread->regs.ebp = rawregs->ebp;
thread->regs.eax = rawregs->eax;
thread->regs.xds = rawregs->ds;
thread->regs.xes = rawregs->es;
thread->regs.xfs = rawregs->fs;
thread->regs.xgs = rawregs->gs;
thread->regs.orig_eax = rawregs->eax;
thread->regs.eip = rawregs->eip;
thread->regs.xcs = rawregs->cs;
thread->regs.eflags = rawregs->eflags;
thread->regs.esp = rawregs->esp;
thread->regs.xss = rawregs->ss;
thread->fpregs.cwd = rawregs->float_save.control_word;
thread->fpregs.swd = rawregs->float_save.status_word;
thread->fpregs.twd = rawregs->float_save.tag_word;
thread->fpregs.fip = rawregs->float_save.error_offset;
thread->fpregs.fcs = rawregs->float_save.error_selector;
thread->fpregs.foo = rawregs->float_save.data_offset;
thread->fpregs.fos = rawregs->float_save.data_selector;
memcpy(thread->fpregs.st_space, rawregs->float_save.register_area,
10 * 8);
thread->fpxregs.cwd = rawregs->float_save.control_word;
thread->fpxregs.swd = rawregs->float_save.status_word;
thread->fpxregs.twd = rawregs->float_save.tag_word;
thread->fpxregs.fop = U16(rawregs->extended_registers + 6);
thread->fpxregs.fip = U16(rawregs->extended_registers + 8);
thread->fpxregs.fcs = U16(rawregs->extended_registers + 12);
thread->fpxregs.foo = U16(rawregs->extended_registers + 16);
thread->fpxregs.fos = U16(rawregs->extended_registers + 20);
thread->fpxregs.mxcsr = U32(rawregs->extended_registers + 24);
memcpy(thread->fpxregs.st_space, rawregs->extended_registers + 32, 128);
memcpy(thread->fpxregs.xmm_space, rawregs->extended_registers + 160, 128);
}
#else
#error "This code has not been ported to your platform yet"
#endif
static void
ParseThreadList(CrashedProcess* crashinfo, MMappedRange range,
const MMappedRange& full_file) {
const uint32_t num_threads =
*(const uint32_t*) range.GetObject(0, sizeof(uint32_t));
for (unsigned i = 0; i < num_threads; ++i) {
CrashedProcess::Thread thread;
memset(&thread, 0, sizeof(thread));
const MDRawThread* rawthread =
(MDRawThread*) range.GetArrayElement(sizeof(uint32_t),
sizeof(MDRawThread), i);
thread.tid = rawthread->thread_id;
thread.stack_addr = rawthread->stack.start_of_memory_range;
MMappedRange stack_range = full_file.Subrange(rawthread->stack.memory);
thread.stack = stack_range.data();
thread.stack_length = rawthread->stack.memory.data_size;
ParseThreadRegisters(&thread,
full_file.Subrange(rawthread->thread_context));
crashinfo->threads.push_back(thread);
}
}
static void
ParseAuxVector(CrashedProcess* crashinfo, MMappedRange range) {
crashinfo->auxv = range.data();
crashinfo->auxv_length = range.length();
}
static void
ParseCmdLine(CrashedProcess* crashinfo, MMappedRange range) {
const char* cmdline = (const char*) range.data();
for (size_t i = 0; i < range.length(); ++i) {
if (cmdline[i] == 0) {
static const size_t fname_len = sizeof(crashinfo->prps.pr_fname) - 1;
static const size_t args_len = sizeof(crashinfo->prps.pr_psargs) - 1;
memset(crashinfo->prps.pr_fname, 0, fname_len + 1);
memset(crashinfo->prps.pr_psargs, 0, args_len + 1);
const char* binary_name = strrchr(cmdline, '/');
if (binary_name) {
binary_name++;
const unsigned len = strlen(binary_name);
memcpy(crashinfo->prps.pr_fname, binary_name,
len > fname_len ? fname_len : len);
} else {
memcpy(crashinfo->prps.pr_fname, cmdline,
i > fname_len ? fname_len : i);
}
const unsigned len = range.length() > args_len ?
args_len : range.length();
memcpy(crashinfo->prps.pr_psargs, cmdline, len);
for (unsigned i = 0; i < len; ++i) {
if (crashinfo->prps.pr_psargs[i] == 0)
crashinfo->prps.pr_psargs[i] = ' ';
}
}
}
}
static void
ParseExceptionStream(CrashedProcess* crashinfo, MMappedRange range) {
const MDRawExceptionStream* exp =
(MDRawExceptionStream*) range.GetObject(0, sizeof(MDRawExceptionStream));
crashinfo->crashing_tid = exp->thread_id;
crashinfo->fatal_signal = (int) exp->exception_record.exception_code;
}
static bool
WriteThread(const CrashedProcess::Thread& thread, int fatal_signal) {
struct prstatus pr;
memset(&pr, 0, sizeof(pr));
pr.pr_info.si_signo = fatal_signal;
pr.pr_cursig = fatal_signal;
pr.pr_pid = thread.tid;
memcpy(&pr.pr_reg, &thread.regs, sizeof(user_regs_struct));
Nhdr nhdr;
memset(&nhdr, 0, sizeof(nhdr));
nhdr.n_namesz = 5;
nhdr.n_descsz = sizeof(struct prstatus);
nhdr.n_type = NT_PRSTATUS;
if (!writea(1, &nhdr, sizeof(nhdr)) ||
!writea(1, "CORE\0\0\0\0", 8) ||
!writea(1, &pr, sizeof(struct prstatus))) {
return false;
}
nhdr.n_descsz = sizeof(user_fpregs_struct);
nhdr.n_type = NT_FPREGSET;
if (!writea(1, &nhdr, sizeof(nhdr)) ||
!writea(1, "CORE\0\0\0\0", 8) ||
!writea(1, &thread.fpregs, sizeof(user_fpregs_struct))) {
return false;
}
nhdr.n_descsz = sizeof(user_fpxregs_struct);
nhdr.n_type = NT_PRXFPREG;
if (!writea(1, &nhdr, sizeof(nhdr)) ||
!writea(1, "LINUX\0\0\0", 8) ||
!writea(1, &thread.fpxregs, sizeof(user_fpxregs_struct))) {
return false;
}
return true;
}
static void
ParseModuleStream(CrashedProcess* crashinfo, MMappedRange range) {
const uint32_t num_mappings =
*(const uint32_t*) range.GetObject(0, sizeof(uint32_t));
for (unsigned i = 0; i < num_mappings; ++i) {
CrashedProcess::Mapping mapping;
const MDRawModule* rawmodule =
(MDRawModule*) range.GetArrayElement(sizeof(uint32_t),
sizeof(MDRawModule), i);
mapping.start_address = rawmodule->base_of_image;
mapping.end_address = rawmodule->size_of_image + rawmodule->base_of_image;
crashinfo->mappings.push_back(mapping);
}
}
int
main(int argc, char** argv) {
if (argc != 2)
return usage(argv[0]);
const int fd = open(argv[1], O_RDONLY);
if (fd < 0)
return usage(argv[0]);
struct stat st;
fstat(fd, &st);
const void* bytes = mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0);
close(fd);
if (bytes == MAP_FAILED) {
perror("Failed to mmap dump file");
return 1;
}
MMappedRange dump(bytes, st.st_size);
const MDRawHeader* header =
(const MDRawHeader*) dump.GetObject(0, sizeof(MDRawHeader));
CrashedProcess crashinfo;
for (unsigned i = 0; i < header->stream_count; ++i) {
const MDRawDirectory* dirent =
(const MDRawDirectory*) dump.GetArrayElement(
header->stream_directory_rva, sizeof(MDRawDirectory), i);
switch (dirent->stream_type) {
case MD_THREAD_LIST_STREAM:
ParseThreadList(&crashinfo, dump.Subrange(dirent->location), dump);
break;
case MD_LINUX_AUXV:
ParseAuxVector(&crashinfo, dump.Subrange(dirent->location));
break;
case MD_LINUX_CMD_LINE:
ParseCmdLine(&crashinfo, dump.Subrange(dirent->location));
break;
case MD_EXCEPTION_STREAM:
ParseExceptionStream(&crashinfo, dump.Subrange(dirent->location));
break;
case MD_MODULE_LIST_STREAM:
ParseModuleStream(&crashinfo, dump.Subrange(dirent->location));
default:
fprintf(stderr, "Skipping %x\n", dirent->stream_type);
}
}
// Write the ELF header. The file will look like:
// ELF header
// Phdr for the PT_NOTE
// Phdr for each of the thread stacks
// PT_NOTE
// each of the thread stacks
Ehdr ehdr;
memset(&ehdr, 0, sizeof(Ehdr));
ehdr.e_ident[0] = ELFMAG0;
ehdr.e_ident[1] = ELFMAG1;
ehdr.e_ident[2] = ELFMAG2;
ehdr.e_ident[3] = ELFMAG3;
ehdr.e_ident[4] = ELF_CLASS;
ehdr.e_ident[5] = sex() ? ELFDATA2MSB : ELFDATA2LSB;
ehdr.e_ident[6] = EV_CURRENT;
ehdr.e_type = ET_CORE;
ehdr.e_machine = ELF_ARCH;
ehdr.e_version = EV_CURRENT;
ehdr.e_phoff = sizeof(Ehdr);
ehdr.e_ehsize = sizeof(Ehdr);
ehdr.e_phentsize= sizeof(Phdr);
ehdr.e_phnum = 1 + crashinfo.threads.size() + crashinfo.mappings.size();
ehdr.e_shentsize= sizeof(Shdr);
if (!writea(1, &ehdr, sizeof(Ehdr)))
return 1;
size_t offset = sizeof(Ehdr) +
(1 + crashinfo.threads.size() +
crashinfo.mappings.size()) * sizeof(Phdr);
size_t filesz = sizeof(Nhdr) + 8 + sizeof(prpsinfo) +
// sizeof(Nhdr) + 8 + sizeof(user) +
sizeof(Nhdr) + 8 + crashinfo.auxv_length +
crashinfo.threads.size() * (
(sizeof(Nhdr) + 8 + sizeof(prstatus)) +
sizeof(Nhdr) + 8 + sizeof(user_fpregs_struct) +
sizeof(Nhdr) + 8 + sizeof(user_fpxregs_struct));
Phdr phdr;
memset(&phdr, 0, sizeof(Phdr));
phdr.p_type = PT_NOTE;
phdr.p_offset = offset;
phdr.p_filesz = filesz;
if (!writea(1, &phdr, sizeof(phdr)))
return 1;
phdr.p_type = PT_LOAD;
phdr.p_align = getpagesize();
size_t note_align = phdr.p_align - ((offset+filesz) % phdr.p_align);
if (note_align == phdr.p_align)
note_align = 0;
offset += note_align;
for (unsigned i = 0; i < crashinfo.threads.size(); ++i) {
const CrashedProcess::Thread& thread = crashinfo.threads[i];
offset += filesz;
filesz = thread.stack_length;
phdr.p_offset = offset;
phdr.p_vaddr = thread.stack_addr;
phdr.p_filesz = phdr.p_memsz = filesz;
phdr.p_flags = PF_R | PF_W;
if (!writea(1, &phdr, sizeof(phdr)))
return 1;
}
for (unsigned i = 0; i < crashinfo.mappings.size(); ++i) {
const CrashedProcess::Mapping& mapping = crashinfo.mappings[i];
phdr.p_offset = 0;
phdr.p_vaddr = mapping.start_address;
phdr.p_filesz = 0;
phdr.p_flags = PF_R;
phdr.p_memsz = mapping.end_address - mapping.start_address;
if (!writea(1, &phdr, sizeof(phdr)))
return 1;
}
Nhdr nhdr;
memset(&nhdr, 0, sizeof(nhdr));
nhdr.n_namesz = 5;
nhdr.n_descsz = sizeof(prpsinfo);
nhdr.n_type = NT_PRPSINFO;
if (!writea(1, &nhdr, sizeof(nhdr)) ||
!writea(1, "CORE\0\0\0\0", 8) ||
!writea(1, &crashinfo.prps, sizeof(prpsinfo))) {
return 1;
}
nhdr.n_descsz = crashinfo.auxv_length;
nhdr.n_type = NT_AUXV;
if (!writea(1, &nhdr, sizeof(nhdr)) ||
!writea(1, "CORE\0\0\0\0", 8) ||
!writea(1, &crashinfo.auxv, crashinfo.auxv_length)) {
return 1;
}
for (unsigned i = 0; i < crashinfo.threads.size(); ++i) {
if (crashinfo.threads[i].tid == crashinfo.crashing_tid) {
WriteThread(crashinfo.threads[i], crashinfo.fatal_signal);
break;
}
}
for (unsigned i = 0; i < crashinfo.threads.size(); ++i) {
if (crashinfo.threads[i].tid != crashinfo.crashing_tid)
WriteThread(crashinfo.threads[i], 0);
}
if (note_align) {
char scratch[note_align];
memset(scratch, 0, sizeof(scratch));
if (!writea(1, scratch, sizeof(scratch)))
return 1;
}
for (unsigned i = 0; i < crashinfo.threads.size(); ++i) {
const CrashedProcess::Thread& thread = crashinfo.threads[i];
if (!writea(1, thread.stack, thread.stack_length))
return 1;
}
munmap(const_cast<void*>(bytes), st.st_size);
return 0;
}