Rename Airbag to Breakpad.

git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@122 4c0a9323-5329-0410-9bdc-e9ce6186880e
This commit is contained in:
mmentovai 2007-02-14 19:51:05 +00:00
parent 83befb1cb4
commit e5dc60822e
118 changed files with 37042 additions and 24117 deletions

View file

@ -0,0 +1,84 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// BasicSourceLineResolver implements SourceLineResolverInterface, using
// address map files produced by a compatible writer, e.g. PDBSourceLineWriter.
#ifndef GOOGLE_BREAKPAD_PROCESSOR_BASIC_SOURCE_LINE_RESOLVER_H__
#define GOOGLE_BREAKPAD_PROCESSOR_BASIC_SOURCE_LINE_RESOLVER_H__
#include <ext/hash_map>
#include "google_breakpad/processor/source_line_resolver_interface.h"
namespace google_breakpad {
using std::string;
using __gnu_cxx::hash_map;
class BasicSourceLineResolver : public SourceLineResolverInterface {
public:
BasicSourceLineResolver();
virtual ~BasicSourceLineResolver();
// SourceLineResolverInterface methods, see source_line_resolver_interface.h
// for more details.
// Adds a module to this resolver, returning true on success.
// The given map_file is read into memory, and its symbols will be
// retained until the BasicSourceLineResolver is destroyed.
virtual bool LoadModule(const string &module_name, const string &map_file);
virtual bool HasModule(const string &module_name) const;
virtual StackFrameInfo* FillSourceLineInfo(StackFrame *frame) const;
private:
template<class T> class MemAddrMap;
struct Line;
struct Function;
struct PublicSymbol;
struct File;
struct HashString {
size_t operator()(const string &s) const;
};
class Module;
// All of the modules we've loaded
typedef hash_map<string, Module*, HashString> ModuleMap;
ModuleMap *modules_;
// Disallow unwanted copy ctor and assignment operator
BasicSourceLineResolver(const BasicSourceLineResolver&);
void operator=(const BasicSourceLineResolver&);
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_BASIC_SOURCE_LINE_RESOLVER_H__

View file

@ -0,0 +1,77 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// call_stack.h: A call stack comprised of stack frames.
//
// This class manages a vector of stack frames. It is used instead of
// exposing the vector directly to allow the CallStack to own StackFrame
// pointers without having to publicly export the linked_ptr class. A
// CallStack must be composed of pointers instead of objects to allow for
// CPU-specific StackFrame subclasses.
//
// By convention, the stack frame at index 0 is the innermost callee frame,
// and the frame at the highest index in a call stack is the outermost
// caller. CallStack only allows stacks to be built by pushing frames,
// beginning with the innermost callee frame.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_CALL_STACK_H__
#define GOOGLE_BREAKPAD_PROCESSOR_CALL_STACK_H__
#include <vector>
namespace google_breakpad {
using std::vector;
struct StackFrame;
template<typename T> class linked_ptr;
class CallStack {
public:
CallStack() { Clear(); }
~CallStack();
// Resets the CallStack to its initial empty state
void Clear();
const vector<StackFrame*>* frames() const { return &frames_; }
private:
// Stackwalker is responsible for building the frames_ vector.
friend class Stackwalker;
// Storage for pushed frames.
vector<StackFrame*> frames_;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCSSOR_CALL_STACK_H__

View file

@ -0,0 +1,93 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// code_module.h: Carries information about code modules that are loaded
// into a process.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_CODE_MODULE_H__
#define GOOGLE_BREAKPAD_PROCESSOR_CODE_MODULE_H__
#include <string>
namespace google_breakpad {
using std::string;
class CodeModule {
public:
virtual ~CodeModule() {}
// The base address of this code module as it was loaded by the process.
// (u_int64_t)-1 on error.
virtual u_int64_t base_address() const = 0;
// The size of the code module. 0 on error.
virtual u_int64_t size() const = 0;
// The path or file name that the code module was loaded from. Empty on
// error.
virtual string code_file() const = 0;
// An identifying string used to discriminate between multiple versions and
// builds of the same code module. This may contain a uuid, timestamp,
// version number, or any combination of this or other information, in an
// implementation-defined format. Empty on error.
virtual string code_identifier() const = 0;
// The filename containing debugging information associated with the code
// module. If debugging information is stored in a file separate from the
// code module itself (as is the case when .pdb or .dSYM files are used),
// this will be different from code_file. If debugging information is
// stored in the code module itself (possibly prior to stripping), this
// will be the same as code_file. Empty on error.
virtual string debug_file() const = 0;
// An identifying string similar to code_identifier, but identifies a
// specific version and build of the associated debug file. This may be
// the same as code_identifier when the debug_file and code_file are
// identical or when the same identifier is used to identify distinct
// debug and code files.
virtual string debug_identifier() const = 0;
// A human-readable representation of the code module's version. Empty on
// error.
virtual string version() const = 0;
// Creates a new copy of this CodeModule object, which the caller takes
// ownership of. The new CodeModule may be of a different concrete class
// than the CodeModule being copied, but will behave identically to the
// copied CodeModule as far as the CodeModule interface is concerned.
virtual const CodeModule* Copy() const = 0;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_CODE_MODULE_H__

View file

@ -0,0 +1,98 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// code_modules.h: Contains all of the CodeModule objects that were loaded
// into a single process.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_CODE_MODULES_H__
#define GOOGLE_BREAKPAD_PROCESSOR_CODE_MODULES_H__
#include "google_breakpad/common/breakpad_types.h"
namespace google_breakpad {
class CodeModule;
class CodeModules {
public:
virtual ~CodeModules() {}
// The number of contained CodeModule objects.
virtual unsigned int module_count() const = 0;
// Random access to modules. Returns the module whose code is present
// at the address indicated by |address|. If no module is present at this
// address, returns NULL. Ownership of the returned CodeModule is retained
// by the CodeModules object; pointers returned by this method are valid for
// comparison with pointers returned by the other Get methods.
virtual const CodeModule* GetModuleForAddress(u_int64_t address) const = 0;
// Returns the module corresponding to the main executable. If there is
// no main executable, returns NULL. Ownership of the returned CodeModule
// is retained by the CodeModules object; pointers returned by this method
// are valid for comparison with pointers returned by the other Get
// methods.
virtual const CodeModule* GetMainModule() const = 0;
// Sequential access to modules. A sequence number of 0 corresponds to the
// module residing lowest in memory. If the sequence number is out of
// range, returns NULL. Ownership of the returned CodeModule is retained
// by the CodeModules object; pointers returned by this method are valid for
// comparison with pointers returned by the other Get methods.
virtual const CodeModule* GetModuleAtSequence(
unsigned int sequence) const = 0;
// Sequential access to modules. This is similar to GetModuleAtSequence,
// except no ordering requirement is enforced. A CodeModules implementation
// may return CodeModule objects from GetModuleAtIndex in any order it
// wishes, provided that the order remain the same throughout the life of
// the CodeModules object. Typically, GetModuleAtIndex would be used by
// a caller to enumerate all CodeModule objects quickly when the enumeration
// does not require any ordering. If the index argument is out of range,
// returns NULL. Ownership of the returned CodeModule is retained by
// the CodeModules object; pointers returned by this method are valid for
// comparison with pointers returned by the other Get methods.
virtual const CodeModule* GetModuleAtIndex(unsigned int index) const = 0;
// Creates a new copy of this CodeModules object, which the caller takes
// ownership of. The new object will also contain copies of the existing
// object's child CodeModule objects. The new CodeModules object may be of
// a different concrete class than the object being copied, but will behave
// identically to the copied object as far as the CodeModules and CodeModule
// interfaces are concerned, except that the order that GetModuleAtIndex
// returns objects in may differ between a copy and the original CodeModules
// object.
virtual const CodeModules* Copy() const = 0;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_CODE_MODULES_H__

View file

@ -0,0 +1,76 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// memory_region.h: Access to memory regions.
//
// A MemoryRegion provides virtual access to a range of memory. It is an
// abstraction allowing the actual source of memory to be independent of
// methods which need to access a virtual memory space.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_MEMORY_REGION_H__
#define GOOGLE_BREAKPAD_PROCESSOR_MEMORY_REGION_H__
#include "google_breakpad/common/breakpad_types.h"
namespace google_breakpad {
class MemoryRegion {
public:
virtual ~MemoryRegion() {}
// The base address of this memory region.
virtual u_int64_t GetBase() = 0;
// The size of this memory region.
virtual u_int32_t GetSize() = 0;
// Access to data of various sizes within the memory region. address
// is a pointer to read, and it must lie within the memory region as
// defined by its base address and size. The location pointed to by
// value is set to the value at address. Byte-swapping is performed
// if necessary so that the value is appropriate for the running
// program. Returns true on success. Fails and returns false if address
// is out of the region's bounds (after considering the width of value),
// or for other types of errors.
virtual bool GetMemoryAtAddress(u_int64_t address, u_int8_t* value) = 0;
virtual bool GetMemoryAtAddress(u_int64_t address, u_int16_t* value) = 0;
virtual bool GetMemoryAtAddress(u_int64_t address, u_int32_t* value) = 0;
virtual bool GetMemoryAtAddress(u_int64_t address, u_int64_t* value) = 0;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_MEMORY_REGION_H__

View file

@ -0,0 +1,813 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// minidump.h: A minidump reader.
//
// The basic structure of this module tracks the structure of the minidump
// file itself. At the top level, a minidump file is represented by a
// Minidump object. Like most other classes in this module, Minidump
// provides a Read method that initializes the object with information from
// the file. Most of the classes in this file are wrappers around the
// "raw" structures found in the minidump file itself, and defined in
// minidump_format.h. For example, each thread is represented by a
// MinidumpThread object, whose parameters are specified in an MDRawThread
// structure. A properly byte-swapped MDRawThread can be obtained from a
// MinidumpThread easily by calling its thread() method.
//
// Most of the module lazily reads only the portion of the minidump file
// necessary to fulfill the user's request. Calling Minidump::Read
// only reads the minidump's directory. The thread list is not read until
// it is needed, and even once it's read, the memory regions for each
// thread's stack aren't read until they're needed. This strategy avoids
// unnecessary file input, and allocating memory for data in which the user
// has no interest. Note that although memory allocations for a typical
// minidump file are not particularly large, it is possible for legitimate
// minidumps to be sizable. A full-memory minidump, for example, contains
// a snapshot of the entire mapped memory space. Even a normal minidump,
// with stack memory only, can be large if, for example, the dump was
// generated in response to a crash that occurred due to an infinite-
// recursion bug that caused the stack's limits to be exceeded. Finally,
// some users of this library will unfortunately find themselves in the
// position of having to process potentially-hostile minidumps that might
// attempt to cause problems by forcing the minidump processor to over-
// allocate memory.
//
// Memory management in this module is based on a strict
// you-don't-own-anything policy. The only object owned by the user is
// the top-level Minidump object, the creation and destruction of which
// must be the user's own responsibility. All other objects obtained
// through interaction with this module are ultimately owned by the
// Minidump object, and will be freed upon the Minidump object's destruction.
// Because memory regions can potentially involve large allocations, a
// FreeMemory method is provided by MinidumpMemoryRegion, allowing the user
// to release data when it is no longer needed. Use of this method is
// optional but recommended. If freed data is later required, it will
// be read back in from the minidump file again.
//
// There is one exception to this memory management policy:
// Minidump::ReadString will return a string object to the user, and the user
// is responsible for its deletion.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
#define GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
#include <map>
#include <string>
#include <vector>
#include "google_breakpad/common/minidump_format.h"
#include "google_breakpad/processor/code_module.h"
#include "google_breakpad/processor/code_modules.h"
#include "google_breakpad/processor/memory_region.h"
namespace google_breakpad {
using std::map;
using std::string;
using std::vector;
class Minidump;
template<typename AddressType, typename EntryType> class RangeMap;
// MinidumpObject is the base of all Minidump* objects except for Minidump
// itself.
class MinidumpObject {
public:
virtual ~MinidumpObject() {}
protected:
explicit MinidumpObject(Minidump* minidump);
// Refers to the Minidump object that is the ultimate parent of this
// Some MinidumpObjects are owned by other MinidumpObjects, but at the
// root of the ownership tree is always a Minidump. The Minidump object
// is kept here for access to its seeking and reading facilities, and
// for access to data about the minidump file itself, such as whether
// it should be byte-swapped.
Minidump* minidump_;
// MinidumpObjects are not valid when created. When a subclass populates
// its own fields, it can set valid_ to true. Accessors and mutators may
// wish to consider or alter the valid_ state as they interact with
// objects.
bool valid_;
};
// This class exists primarily to provide a virtual destructor in a base
// class common to all objects that might be stored in
// Minidump::mStreamObjects. Some object types (MinidumpContext) will
// never be stored in Minidump::mStreamObjects, but are represented as
// streams and adhere to the same interface, and may be derived from
// this class.
class MinidumpStream : public MinidumpObject {
public:
virtual ~MinidumpStream() {}
protected:
explicit MinidumpStream(Minidump* minidump);
private:
// Populate (and validate) the MinidumpStream. minidump_ is expected
// to be positioned at the beginning of the stream, so that the next
// read from the minidump will be at the beginning of the stream.
// expected_size should be set to the stream's length as contained in
// the MDRawDirectory record or other identifying record. A class
// that implements MinidumpStream can compare expected_size to a
// known size as an integrity check.
virtual bool Read(u_int32_t expected_size) = 0;
};
// MinidumpContext carries a CPU-specific MDRawContext structure, which
// contains CPU context such as register states. Each thread has its
// own context, and the exception record, if present, also has its own
// context. Note that if the exception record is present, the context it
// refers to is probably what the user wants to use for the exception
// thread, instead of that thread's own context. The exception thread's
// context (as opposed to the exception record's context) will contain
// context for the exception handler (which performs minidump generation),
// and not the context that caused the exception (which is probably what the
// user wants).
class MinidumpContext : public MinidumpStream {
public:
virtual ~MinidumpContext();
// Returns an MD_CONTEXT_* value such as MD_CONTEXT_X86 or MD_CONTEXT_PPC
// identifying the CPU type that the context was collected from. The
// returned value will identify the CPU only, and will have any other
// MD_CONTEXT_* bits masked out. Returns 0 on failure.
u_int32_t GetContextCPU() const;
// Returns raw CPU-specific context data for the named CPU type. If the
// context data does not match the CPU type or does not exist, returns
// NULL.
const MDRawContextX86* GetContextX86() const;
const MDRawContextPPC* GetContextPPC() const;
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class MinidumpThread;
friend class MinidumpException;
explicit MinidumpContext(Minidump* minidump);
bool Read(u_int32_t expected_size);
// Free the CPU-specific context structure.
void FreeContext();
// If the minidump contains a SYSTEM_INFO_STREAM, makes sure that the
// system info stream gives an appropriate CPU type matching the context
// CPU type in context_cpu_type. Returns false if the CPU type does not
// match. Returns true if the CPU type matches or if the minidump does
// not contain a system info stream.
bool CheckAgainstSystemInfo(u_int32_t context_cpu_type);
// The CPU-specific context structure.
union {
MDRawContextBase* base;
MDRawContextX86* x86;
MDRawContextPPC* ppc;
} context_;
};
// MinidumpMemoryRegion does not wrap any MDRaw structure, and only contains
// a reference to an MDMemoryDescriptor. This object is intended to wrap
// portions of a minidump file that contain memory dumps. In normal
// minidumps, each MinidumpThread owns a MinidumpMemoryRegion corresponding
// to the thread's stack memory. MinidumpMemoryList also gives access to
// memory regions in its list as MinidumpMemoryRegions. This class
// adheres to MemoryRegion so that it may be used as a data provider to
// the Stackwalker family of classes.
class MinidumpMemoryRegion : public MinidumpObject,
public MemoryRegion {
public:
virtual ~MinidumpMemoryRegion();
// Returns a pointer to the base of the memory region. Returns the
// cached value if available, otherwise, reads the minidump file and
// caches the memory region.
const u_int8_t* GetMemory();
// The address of the base of the memory region.
u_int64_t GetBase();
// The size, in bytes, of the memory region.
u_int32_t GetSize();
// Frees the cached memory region, if cached.
void FreeMemory();
// Obtains the value of memory at the pointer specified by address.
bool GetMemoryAtAddress(u_int64_t address, u_int8_t* value);
bool GetMemoryAtAddress(u_int64_t address, u_int16_t* value);
bool GetMemoryAtAddress(u_int64_t address, u_int32_t* value);
bool GetMemoryAtAddress(u_int64_t address, u_int64_t* value);
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class MinidumpThread;
friend class MinidumpMemoryList;
explicit MinidumpMemoryRegion(Minidump* minidump);
// Identify the base address and size of the memory region, and the
// location it may be found in the minidump file.
void SetDescriptor(MDMemoryDescriptor* descriptor);
// Implementation for GetMemoryAtAddress
template<typename T> bool GetMemoryAtAddressInternal(u_int64_t address,
T* value);
// Base address and size of the memory region, and its position in the
// minidump file.
MDMemoryDescriptor* descriptor_;
// Cached memory.
vector<u_int8_t>* memory_;
};
// MinidumpThread contains information about a thread of execution,
// including a snapshot of the thread's stack and CPU context. For
// the thread that caused an exception, the context carried by
// MinidumpException is probably desired instead of the CPU context
// provided here.
class MinidumpThread : public MinidumpObject {
public:
virtual ~MinidumpThread();
const MDRawThread* thread() const { return valid_ ? &thread_ : NULL; }
MinidumpMemoryRegion* GetMemory();
MinidumpContext* GetContext();
// The thread ID is used to determine if a thread is the exception thread,
// so a special getter is provided to retrieve this data from the
// MDRawThread structure. Returns false if the thread ID cannot be
// determined.
bool GetThreadID(u_int32_t *thread_id) const;
// Print a human-readable representation of the object to stdout.
void Print();
private:
// These objects are managed by MinidumpThreadList.
friend class MinidumpThreadList;
explicit MinidumpThread(Minidump* minidump);
// This works like MinidumpStream::Read, but is driven by
// MinidumpThreadList. No size checking is done, because
// MinidumpThreadList handles that directly.
bool Read();
MDRawThread thread_;
MinidumpMemoryRegion* memory_;
MinidumpContext* context_;
};
// MinidumpThreadList contains all of the threads (as MinidumpThreads) in
// a process.
class MinidumpThreadList : public MinidumpStream {
public:
virtual ~MinidumpThreadList();
unsigned int thread_count() const { return valid_ ? thread_count_ : 0; }
// Sequential access to threads.
MinidumpThread* GetThreadAtIndex(unsigned int index) const;
// Random access to threads.
MinidumpThread* GetThreadByID(u_int32_t thread_id);
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
typedef map<u_int32_t, MinidumpThread*> IDToThreadMap;
typedef vector<MinidumpThread> MinidumpThreads;
static const u_int32_t kStreamType = MD_THREAD_LIST_STREAM;
explicit MinidumpThreadList(Minidump* aMinidump);
bool Read(u_int32_t aExpectedSize);
// Access to threads using the thread ID as the key.
IDToThreadMap id_to_thread_map_;
// The list of threads.
MinidumpThreads* threads_;
u_int32_t thread_count_;
};
// MinidumpModule wraps MDRawModule, which contains information about loaded
// code modules. Access is provided to various data referenced indirectly
// by MDRawModule, such as the module's name and a specification for where
// to locate debugging information for the module.
class MinidumpModule : public MinidumpObject,
public CodeModule {
public:
virtual ~MinidumpModule();
const MDRawModule* module() const { return valid_ ? &module_ : NULL; }
// CodeModule implementation
virtual u_int64_t base_address() const {
return valid_ ? module_.base_of_image : static_cast<u_int64_t>(-1);
}
virtual u_int64_t size() const { return valid_ ? module_.size_of_image : 0; }
virtual string code_file() const;
virtual string code_identifier() const;
virtual string debug_file() const;
virtual string debug_identifier() const;
virtual string version() const;
virtual const CodeModule* Copy() const;
// The CodeView record, which contains information to locate the module's
// debugging information (pdb). This is returned as u_int8_t* because
// the data can be of types MDCVInfoPDB20* or MDCVInfoPDB70*, or it may be
// of a type unknown to Breakpad, in which case the raw data will still be
// returned but no byte-swapping will have been performed. Check the
// record's signature in the first four bytes to differentiate between
// the various types. Current toolchains generate modules which carry
// MDCVInfoPDB70 by default. Returns a pointer to the CodeView record on
// success, and NULL on failure. On success, the optional |size| argument
// is set to the size of the CodeView record.
const u_int8_t* GetCVRecord(u_int32_t* size);
// The miscellaneous debug record, which is obsolete. Current toolchains
// do not generate this type of debugging information (dbg), and this
// field is not expected to be present. Returns a pointer to the debugging
// record on success, and NULL on failure. On success, the optional |size|
// argument is set to the size of the debugging record.
const MDImageDebugMisc* GetMiscRecord(u_int32_t* size);
// Print a human-readable representation of the object to stdout.
void Print();
private:
// These objects are managed by MinidumpModuleList.
friend class MinidumpModuleList;
explicit MinidumpModule(Minidump* minidump);
// This works like MinidumpStream::Read, but is driven by
// MinidumpModuleList. No size checking is done, because
// MinidumpModuleList handles that directly.
bool Read();
// Reads indirectly-referenced data, including the module name, CodeView
// record, and miscellaneous debugging record. This is necessary to allow
// MinidumpModuleList to fully construct MinidumpModule objects without
// requiring seeks to read a contiguous set of MinidumpModule objects.
// All auxiliary data should be available when Read is called, in order to
// allow the CodeModule getters to be const methods.
bool ReadAuxiliaryData();
// True after a successful Read. This is different from valid_, which is
// not set true until ReadAuxiliaryData also completes successfully.
// module_valid_ is only used by ReadAuxiliaryData and the functions it
// calls to determine whether the object is ready for auxiliary data to
// be read.
bool module_valid_;
MDRawModule module_;
// Cached module name.
const string* name_;
// Cached CodeView record - this is MDCVInfoPDB20 or (likely)
// MDCVInfoPDB70, or possibly something else entirely. Stored as a u_int8_t
// because the structure contains a variable-sized string and its exact
// size cannot be known until it is processed.
vector<u_int8_t>* cv_record_;
// If cv_record_ is present, cv_record_signature_ contains a copy of the
// CodeView record's first four bytes, for ease of determinining the
// type of structure that cv_record_ contains.
u_int32_t cv_record_signature_;
// Cached MDImageDebugMisc (usually not present), stored as u_int8_t
// because the structure contains a variable-sized string and its exact
// size cannot be known until it is processed.
vector<u_int8_t>* misc_record_;
};
// MinidumpModuleList contains all of the loaded code modules for a process
// in the form of MinidumpModules. It maintains a map of these modules
// so that it may easily provide a code module corresponding to a specific
// address.
class MinidumpModuleList : public MinidumpStream,
public CodeModules {
public:
virtual ~MinidumpModuleList();
// CodeModules implementation.
virtual unsigned int module_count() const {
return valid_ ? module_count_ : 0;
}
virtual const MinidumpModule* GetModuleForAddress(u_int64_t address) const;
virtual const MinidumpModule* GetMainModule() const;
virtual const MinidumpModule* GetModuleAtSequence(
unsigned int sequence) const;
virtual const MinidumpModule* GetModuleAtIndex(unsigned int index) const;
virtual const CodeModules* Copy() const;
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
typedef vector<MinidumpModule> MinidumpModules;
static const u_int32_t kStreamType = MD_MODULE_LIST_STREAM;
explicit MinidumpModuleList(Minidump* minidump);
bool Read(u_int32_t expected_size);
// Access to modules using addresses as the key.
RangeMap<u_int64_t, unsigned int> *range_map_;
MinidumpModules *modules_;
u_int32_t module_count_;
};
// MinidumpMemoryList corresponds to a minidump's MEMORY_LIST_STREAM stream,
// which references the snapshots of all of the memory regions contained
// within the minidump. For a normal minidump, this includes stack memory
// (also referenced by each MinidumpThread, in fact, the MDMemoryDescriptors
// here and in MDRawThread both point to exactly the same data in a
// minidump file, conserving space), as well as a 256-byte snapshot of memory
// surrounding the instruction pointer in the case of an exception. Other
// types of minidumps may contain significantly more memory regions. Full-
// memory minidumps contain all of a process' mapped memory.
class MinidumpMemoryList : public MinidumpStream {
public:
virtual ~MinidumpMemoryList();
unsigned int region_count() const { return valid_ ? region_count_ : 0; }
// Sequential access to memory regions.
MinidumpMemoryRegion* GetMemoryRegionAtIndex(unsigned int index);
// Random access to memory regions. Returns the region encompassing
// the address identified by address.
MinidumpMemoryRegion* GetMemoryRegionForAddress(u_int64_t address);
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
typedef vector<MDMemoryDescriptor> MemoryDescriptors;
typedef vector<MinidumpMemoryRegion> MemoryRegions;
static const u_int32_t kStreamType = MD_MEMORY_LIST_STREAM;
explicit MinidumpMemoryList(Minidump* minidump);
bool Read(u_int32_t expected_size);
// Access to memory regions using addresses as the key.
RangeMap<u_int64_t, unsigned int> *range_map_;
// The list of descriptors. This is maintained separately from the list
// of regions, because MemoryRegion doesn't own its MemoryDescriptor, it
// maintains a pointer to it. descriptors_ provides the storage for this
// purpose.
MemoryDescriptors *descriptors_;
// The list of regions.
MemoryRegions *regions_;
u_int32_t region_count_;
};
// MinidumpException wraps MDRawExceptionStream, which contains information
// about the exception that caused the minidump to be generated, if the
// minidump was generated in an exception handler called as a result of
// an exception. It also provides access to a MinidumpContext object,
// which contains the CPU context for the exception thread at the time
// the exception occurred.
class MinidumpException : public MinidumpStream {
public:
virtual ~MinidumpException();
const MDRawExceptionStream* exception() const {
return valid_ ? &exception_ : NULL;
}
// The thread ID is used to determine if a thread is the exception thread,
// so a special getter is provided to retrieve this data from the
// MDRawExceptionStream structure. Returns false if the thread ID cannot
// be determined.
bool GetThreadID(u_int32_t *thread_id) const;
MinidumpContext* GetContext();
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
static const u_int32_t kStreamType = MD_EXCEPTION_STREAM;
explicit MinidumpException(Minidump* minidump);
bool Read(u_int32_t expected_size);
MDRawExceptionStream exception_;
MinidumpContext* context_;
};
// MinidumpSystemInfo wraps MDRawSystemInfo and provides information about
// the system on which the minidump was generated. See also MinidumpMiscInfo.
class MinidumpSystemInfo : public MinidumpStream {
public:
virtual ~MinidumpSystemInfo();
const MDRawSystemInfo* system_info() const {
return valid_ ? &system_info_ : NULL;
}
// GetOS and GetCPU return textual representations of the operating system
// and CPU that produced the minidump. Unlike most other Minidump* methods,
// they return string objects, not weak pointers. Defined values for
// GetOS() are "mac", "windows", and "linux". Defined values for GetCPU
// are "x86" and "ppc". These methods return an empty string when their
// values are unknown.
string GetOS();
string GetCPU();
// I don't know what CSD stands for, but this field is documented as
// returning a textual representation of the OS service pack. On other
// platforms, this provides additional information about an OS version
// level beyond major.minor.micro. Returns NULL if unknown.
const string* GetCSDVersion();
// If a CPU vendor string can be determined, returns a pointer to it,
// otherwise, returns NULL. CPU vendor strings can be determined from
// x86 CPUs with CPUID 0.
const string* GetCPUVendor();
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
static const u_int32_t kStreamType = MD_SYSTEM_INFO_STREAM;
explicit MinidumpSystemInfo(Minidump* minidump);
bool Read(u_int32_t expected_size);
MDRawSystemInfo system_info_;
// Textual representation of the OS service pack, for minidumps produced
// by MiniDumpWriteDump on Windows.
const string* csd_version_;
// A string identifying the CPU vendor, if known.
const string* cpu_vendor_;
};
// MinidumpMiscInfo wraps MDRawMiscInfo and provides information about
// the process that generated the minidump, and optionally additional system
// information. See also MinidumpSystemInfo.
class MinidumpMiscInfo : public MinidumpStream {
public:
const MDRawMiscInfo* misc_info() const {
return valid_ ? &misc_info_ : NULL;
}
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
static const u_int32_t kStreamType = MD_MISC_INFO_STREAM;
explicit MinidumpMiscInfo(Minidump* minidump_);
bool Read(u_int32_t expected_size_);
MDRawMiscInfo misc_info_;
};
// MinidumpBreakpadInfo wraps MDRawBreakpadInfo, which is an optional stream in
// a minidump that provides additional information about the process state
// at the time the minidump was generated.
class MinidumpBreakpadInfo : public MinidumpStream {
public:
const MDRawBreakpadInfo* breakpad_info() const {
return valid_ ? &breakpad_info_ : NULL;
}
// These thread IDs are used to determine if threads deserve special
// treatment, so special getters are provided to retrieve this data from
// the MDRawBreakpadInfo structure. The getters return false if the thread
// IDs cannot be determined.
bool GetDumpThreadID(u_int32_t *thread_id) const;
bool GetRequestingThreadID(u_int32_t *thread_id) const;
// Print a human-readable representation of the object to stdout.
void Print();
private:
friend class Minidump;
static const u_int32_t kStreamType = MD_BREAKPAD_INFO_STREAM;
explicit MinidumpBreakpadInfo(Minidump* minidump_);
bool Read(u_int32_t expected_size_);
MDRawBreakpadInfo breakpad_info_;
};
// Minidump is the user's interface to a minidump file. It wraps MDRawHeader
// and provides access to the minidump's top-level stream directory.
class Minidump {
public:
// path is the pathname of a file containing the minidump.
explicit Minidump(const string& path);
~Minidump();
const MDRawHeader* header() const { return valid_ ? &header_ : NULL; }
// Reads the minidump file's header and top-level stream directory.
// The minidump is expected to be positioned at the beginning of the
// header. Read() sets up the stream list and map, and validates the
// Minidump object.
bool Read();
// The next set of methods are stubs that call GetStream. They exist to
// force code generation of the templatized API within the module, and
// to avoid exposing an ugly API (GetStream needs to accept a garbage
// parameter).
MinidumpThreadList* GetThreadList();
MinidumpModuleList* GetModuleList();
MinidumpMemoryList* GetMemoryList();
MinidumpException* GetException();
MinidumpSystemInfo* GetSystemInfo();
MinidumpMiscInfo* GetMiscInfo();
MinidumpBreakpadInfo* GetBreakpadInfo();
// The next set of methods are provided for users who wish to access
// data in minidump files directly, while leveraging the rest of
// this class and related classes to handle the basic minidump
// structure and known stream types.
unsigned int GetDirectoryEntryCount() const {
return valid_ ? header_.stream_count : 0;
}
const MDRawDirectory* GetDirectoryEntryAtIndex(unsigned int index) const;
// The next 2 methods are lower-level I/O routines. They use fd_.
// Reads count bytes from the minidump at the current position into
// the storage area pointed to by bytes. bytes must be of sufficient
// size. After the read, the file position is advanced by count.
bool ReadBytes(void* bytes, size_t count);
// Sets the position of the minidump file to offset.
bool SeekSet(off_t offset);
// The next 2 methods are medium-level I/O routines.
// ReadString returns a string which is owned by the caller! offset
// specifies the offset that a length-encoded string is stored at in the
// minidump file.
string* ReadString(off_t offset);
// SeekToStreamType positions the file at the beginning of a stream
// identified by stream_type, and informs the caller of the stream's
// length by setting *stream_length. Because stream_map maps each stream
// type to only one stream in the file, this might mislead the user into
// thinking that the stream that this seeks to is the only stream with
// type stream_type. That can't happen for streams that these classes
// deal with directly, because they're only supposed to be present in the
// file singly, and that's verified when stream_map_ is built. Users who
// are looking for other stream types should be aware of this
// possibility, and consider using GetDirectoryEntryAtIndex (possibly
// with GetDirectoryEntryCount) if expecting multiple streams of the same
// type in a single minidump file.
bool SeekToStreamType(u_int32_t stream_type, u_int32_t* stream_length);
bool swap() const { return valid_ ? swap_ : false; }
// Print a human-readable representation of the object to stdout.
void Print();
private:
// MinidumpStreamInfo is used in the MinidumpStreamMap. It lets
// the Minidump object locate interesting streams quickly, and
// provides a convenient place to stash MinidumpStream objects.
struct MinidumpStreamInfo {
MinidumpStreamInfo() : stream_index(0), stream(NULL) {}
~MinidumpStreamInfo() { delete stream; }
// Index into the MinidumpDirectoryEntries vector
unsigned int stream_index;
// Pointer to the stream if cached, or NULL if not yet populated
MinidumpStream* stream;
};
typedef vector<MDRawDirectory> MinidumpDirectoryEntries;
typedef map<u_int32_t, MinidumpStreamInfo> MinidumpStreamMap;
template<typename T> T* GetStream(T** stream);
// Opens the minidump file, or if already open, seeks to the beginning.
bool Open();
MDRawHeader header_;
// The list of streams.
MinidumpDirectoryEntries* directory_;
// Access to streams using the stream type as the key.
MinidumpStreamMap* stream_map_;
// The pathname of the minidump file to process, set in the constructor.
const string path_;
// The file descriptor for all file I/O. Used by ReadBytes and SeekSet.
// Set based on the |path_| member by Open, which is called by Read.
int fd_;
// swap_ is true if the minidump file should be byte-swapped. If the
// minidump was produced by a CPU that is other-endian than the CPU
// processing the minidump, this will be true. If the two CPUs are
// same-endian, this will be false.
bool swap_;
// Validity of the Minidump structure, false immediately after
// construction or after a failed Read(); true following a successful
// Read().
bool valid_;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__

View file

@ -0,0 +1,91 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_PROCESSOR_H__
#define GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_PROCESSOR_H__
#include <string>
namespace google_breakpad {
using std::string;
class Minidump;
class ProcessState;
class SourceLineResolverInterface;
class SymbolSupplier;
class SystemInfo;
class MinidumpProcessor {
public:
// Return type for Process()
enum ProcessResult {
PROCESS_OK, // the minidump was processed successfully
PROCESS_ERROR, // there was an error processing the minidump
PROCESS_INTERRUPTED, // processing was interrupted by the SymbolSupplier
};
// Initializes this MinidumpProcessor. supplier should be an
// implementation of the SymbolSupplier abstract base class.
MinidumpProcessor(SymbolSupplier *supplier,
SourceLineResolverInterface *resolver);
~MinidumpProcessor();
// Processes the minidump file and fills process_state with the result.
ProcessResult Process(const string &minidump_file,
ProcessState *process_state);
// Populates the cpu_* fields of the |info| parameter with textual
// representations of the CPU type that the minidump in |dump| was
// produced on.
static void GetCPUInfo(Minidump *dump, SystemInfo *info);
// Populates the os_* fields of the |info| parameter with textual
// representations of the operating system that the minidump in |dump|
// was produced on.
static void GetOSInfo(Minidump *dump, SystemInfo *info);
// Returns a textual representation of the reason that a crash occurred,
// if the minidump in dump was produced as a result of a crash. Returns
// an empty string if this information cannot be determined. If address
// is non-NULL, it will be set to contain the address that caused the
// exception, if this information is available. This will be a code
// address when the crash was caused by problems such as illegal
// instructions or divisions by zero, or a data address when the crash
// was caused by a memory access violation.
static string GetCrashReason(Minidump *dump, u_int64_t *address);
private:
SymbolSupplier *supplier_;
SourceLineResolverInterface *resolver_;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_PROCESSOR_H__

View file

@ -0,0 +1,114 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// process_state.h: A snapshot of a process, in a fully-digested state.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_PROCESS_STATE_H__
#define GOOGLE_BREAKPAD_PROCESSOR_PROCESS_STATE_H__
#include <string>
#include <vector>
#include "google_breakpad/processor/system_info.h"
namespace google_breakpad {
using std::string;
using std::vector;
class CallStack;
class CodeModules;
class ProcessState {
public:
ProcessState() : modules_(NULL) { Clear(); }
~ProcessState();
// Resets the ProcessState to its default values
void Clear();
// Accessors. See the data declarations below.
u_int32_t time_date_stamp() const { return time_date_stamp_; }
bool crashed() const { return crashed_; }
string crash_reason() const { return crash_reason_; }
u_int64_t crash_address() const { return crash_address_; }
int requesting_thread() const { return requesting_thread_; }
const vector<CallStack*>* threads() const { return &threads_; }
const SystemInfo* system_info() const { return &system_info_; }
const CodeModules* modules() const { return modules_; }
private:
// MinidumpProcessor is responsible for building ProcessState objects.
friend class MinidumpProcessor;
// The time-date stamp of the minidump (time_t format)
u_int32_t time_date_stamp_;
// True if the process crashed, false if the dump was produced outside
// of an exception handler.
bool crashed_;
// If the process crashed, the type of crash. OS- and possibly CPU-
// specific. For example, "EXCEPTION_ACCESS_VIOLATION" (Windows),
// "EXC_BAD_ACCESS / KERN_INVALID_ADDRESS" (Mac OS X), "SIGSEGV"
// (other Unix).
string crash_reason_;
// If the process crashed, and if crash_reason implicates memory,
// the memory address that caused the crash. For data access errors,
// this will be the data address that caused the fault. For code errors,
// this will be the address of the instruction that caused the fault.
u_int64_t crash_address_;
// The index of the thread that requested a dump be written in the
// threads vector. If a dump was produced as a result of a crash, this
// will point to the thread that crashed. If the dump was produced as
// by user code without crashing, and the dump contains extended Breakpad
// information, this will point to the thread that requested the dump.
// If the dump was not produced as a result of an exception and no
// extended Breakpad information is present, this field will be set to -1,
// indicating that the dump thread is not available.
int requesting_thread_;
// Stacks for each thread (except possibly the exception handler
// thread) at the time of the crash.
vector<CallStack*> threads_;
// OS and CPU information.
SystemInfo system_info_;
// The modules that were loaded into the process represented by the
// ProcessState.
const CodeModules *modules_;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_PROCESS_STATE_H__

View file

@ -0,0 +1,79 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Abstract interface to return function/file/line info for a memory address.
#ifndef GOOGLE_BREAKPAD_PROCESSOR_SOURCE_LINE_RESOLVER_INTERFACE_H__
#define GOOGLE_BREAKPAD_PROCESSOR_SOURCE_LINE_RESOLVER_INTERFACE_H__
#include <string>
#include "google_breakpad/common/breakpad_types.h"
namespace google_breakpad {
using std::string;
struct StackFrame;
struct StackFrameInfo;
class SourceLineResolverInterface {
public:
typedef u_int64_t MemAddr;
virtual ~SourceLineResolverInterface() {}
// Adds a module to this resolver, returning true on success.
//
// module_name may be an arbitrary string. Typically, it will be the
// filename of the module, optionally with version identifiers.
//
// map_file should contain line/address mappings for this module.
virtual bool LoadModule(const string &module_name,
const string &map_file) = 0;
// Returns true if a module with the given name has been loaded.
virtual bool HasModule(const string &module_name) const = 0;
// Fills in the function_base, function_name, source_file_name,
// and source_line fields of the StackFrame. The instruction and
// module_name fields must already be filled in. Additional debugging
// information, if available, is returned. If the information is not
// available, returns NULL. A NULL return value does not indicate an
// error. The caller takes ownership of any returned StackFrameInfo
// object.
virtual StackFrameInfo* FillSourceLineInfo(StackFrame *frame) const = 0;
protected:
// SourceLineResolverInterface cannot be instantiated except by subclasses
SourceLineResolverInterface() {}
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_SOURCE_LINE_RESOLVER_INTERFACE_H__

View file

@ -0,0 +1,84 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_H__
#define GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_H__
#include <string>
#include "google_breakpad/common/breakpad_types.h"
namespace google_breakpad {
class CodeModule;
using std::string;
struct StackFrame {
StackFrame()
: instruction(),
module(NULL),
function_name(),
function_base(),
source_file_name(),
source_line(),
source_line_base() {}
virtual ~StackFrame() {}
// The program counter location as an absolute virtual address. For the
// innermost called frame in a stack, this will be an exact program counter
// or instruction pointer value. For all other frames, this will be within
// the instruction that caused execution to branch to a called function,
// but may not necessarily point to the exact beginning of that instruction.
u_int64_t instruction;
// The module in which the instruction resides.
const CodeModule *module;
// The function name, may be omitted if debug symbols are not available.
string function_name;
// The start address of the function, may be omitted if debug symbols
// are not available.
u_int64_t function_base;
// The source file name, may be omitted if debug symbols are not available.
string source_file_name;
// The (1-based) source line number, may be omitted if debug symbols are
// not available.
int source_line;
// The start address of the source line, may be omitted if debug symbols
// are not available.
u_int64_t source_line_base;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_H__

View file

@ -0,0 +1,103 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// stack_frame_cpu.h: CPU-specific StackFrame extensions.
//
// These types extend the StackFrame structure to carry CPU-specific register
// state. They are defined in this header instead of stack_frame.h to
// avoid the need to include minidump_format.h when only the generic
// StackFrame type is needed.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_CPU_H__
#define GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_CPU_H__
#include "google_breakpad/common/minidump_format.h"
#include "google_breakpad/processor/stack_frame.h"
namespace google_breakpad {
struct StackFrameX86 : public StackFrame {
// ContextValidity has one entry for each relevant hardware pointer register
// (%eip and %esp) and one entry for each nonvolatile (callee-save) register.
enum ContextValidity {
CONTEXT_VALID_NONE = 0,
CONTEXT_VALID_EIP = 1 << 0,
CONTEXT_VALID_ESP = 1 << 1,
CONTEXT_VALID_EBP = 1 << 2,
CONTEXT_VALID_EBX = 1 << 3,
CONTEXT_VALID_ESI = 1 << 4,
CONTEXT_VALID_EDI = 1 << 5,
CONTEXT_VALID_ALL = -1
};
StackFrameX86() : context(), context_validity(CONTEXT_VALID_NONE) {}
// Register state. This is only fully valid for the topmost frame in a
// stack. In other frames, the values of nonvolatile registers may be
// present, given sufficient debugging information. Refer to
// context_validity.
MDRawContextX86 context;
// context_validity is actually ContextValidity, but int is used because
// the OR operator doesn't work well with enumerated types. This indicates
// which fields in context are valid.
int context_validity;
};
struct StackFramePPC : public StackFrame {
// ContextValidity should eventually contain entries for the validity of
// other nonvolatile (callee-save) registers as in
// StackFrameX86::ContextValidity, but the ppc stackwalker doesn't currently
// locate registers other than the ones listed here.
enum ContextValidity {
CONTEXT_VALID_NONE = 0,
CONTEXT_VALID_SRR0 = 1 << 0,
CONTEXT_VALID_GPR1 = 1 << 1,
CONTEXT_VALID_ALL = -1
};
StackFramePPC() : context(), context_validity(CONTEXT_VALID_NONE) {}
// Register state. This is only fully valid for the topmost frame in a
// stack. In other frames, the values of nonvolatile registers may be
// present, given sufficient debugging information. Refer to
// context_validity.
MDRawContextPPC context;
// context_validity is actually ContextValidity, but int is used because
// the OR operator doesn't work well with enumerated types. This indicates
// which fields in context are valid.
int context_validity;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_CPU_H__

View file

@ -0,0 +1,140 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// stackwalker.h: Generic stackwalker.
//
// The Stackwalker class is an abstract base class providing common generic
// methods that apply to stacks from all systems. Specific implementations
// will extend this class by providing GetContextFrame and GetCallerFrame
// methods to fill in system-specific data in a StackFrame structure.
// Stackwalker assembles these StackFrame strucutres into a CallStack.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_STACKWALKER_H__
#define GOOGLE_BREAKPAD_PROCESSOR_STACKWALKER_H__
#include <vector>
namespace google_breakpad {
class CallStack;
class CodeModules;
template<typename T> class linked_ptr;
class MemoryRegion;
class MinidumpContext;
class SourceLineResolverInterface;
struct StackFrame;
struct StackFrameInfo;
class SymbolSupplier;
class SystemInfo;
using std::vector;
class Stackwalker {
public:
virtual ~Stackwalker() {}
// Populates the given CallStack by calling GetContextFrame and
// GetCallerFrame. The frames are further processed to fill all available
// data. Returns true if the stackwalk completed, or false if it was
// interrupted by SymbolSupplier::GetSymbolFile().
bool Walk(CallStack *stack);
// Returns a new concrete subclass suitable for the CPU that a stack was
// generated on, according to the CPU type indicated by the context
// argument. If no suitable concrete subclass exists, returns NULL.
static Stackwalker* StackwalkerForCPU(const SystemInfo *system_info,
MinidumpContext *context,
MemoryRegion *memory,
const CodeModules *modules,
SymbolSupplier *supplier,
SourceLineResolverInterface *resolver);
protected:
// system_info identifies the operating system, NULL or empty if unknown.
// memory identifies a MemoryRegion that provides the stack memory
// for the stack to walk. modules, if non-NULL, is a CodeModules
// object that is used to look up which code module each stack frame is
// associated with. supplier is an optional caller-supplied SymbolSupplier
// implementation. If supplier is NULL, source line info will not be
// resolved. resolver is an instance of SourceLineResolverInterface
// (see source_line_resolver_interface.h and basic_source_line_resolver.h).
// If resolver is NULL, source line info will not be resolved.
Stackwalker(const SystemInfo *system_info,
MemoryRegion *memory,
const CodeModules *modules,
SymbolSupplier *supplier,
SourceLineResolverInterface *resolver);
// Information about the system that produced the minidump. Subclasses
// and the SymbolSupplier may find this information useful.
const SystemInfo *system_info_;
// The stack memory to walk. Subclasses will require this region to
// get information from the stack.
MemoryRegion *memory_;
private:
// Obtains the context frame, the innermost called procedure in a stack
// trace. Returns NULL on failure. GetContextFrame allocates a new
// StackFrame (or StackFrame subclass), ownership of which is taken by
// the caller.
virtual StackFrame* GetContextFrame() = 0;
// Obtains a caller frame. Each call to GetCallerFrame should return the
// frame that called the last frame returned by GetContextFrame or
// GetCallerFrame. To aid this purpose, stack contains the CallStack
// made of frames that have already been walked. GetCallerFrame should
// return NULL on failure or when there are no more caller frames (when
// the end of the stack has been reached). GetCallerFrame allocates a new
// StackFrame (or StackFrame subclass), ownership of which is taken by
// the caller.
virtual StackFrame* GetCallerFrame(
const CallStack *stack,
const vector< linked_ptr<StackFrameInfo> > &stack_frame_info) = 0;
// A list of modules, for populating each StackFrame's module information.
// This field is optional and may be NULL.
const CodeModules *modules_;
// The optional SymbolSupplier for resolving source line info.
SymbolSupplier *supplier_;
// The SourceLineResolver implementation
SourceLineResolverInterface *resolver_;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_STACKWALKER_H__

View file

@ -0,0 +1,72 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The caller may implement the SymbolSupplier abstract base class
// to provide symbols for a given module.
#ifndef GOOGLE_BREAKPAD_PROCESSOR_SYMBOL_SUPPLIER_H__
#define GOOGLE_BREAKPAD_PROCESSOR_SYMBOL_SUPPLIER_H__
#include <string>
namespace google_breakpad {
using std::string;
class CodeModule;
class SystemInfo;
class SymbolSupplier {
public:
// Result type for GetSymbolFile
enum SymbolResult {
// no symbols were found, but continue processing
NOT_FOUND,
// symbols were found, and the path has been placed in symbol_file
FOUND,
// stops processing the minidump immediately
INTERRUPT,
};
virtual ~SymbolSupplier() {}
// Retrieves the symbol file for the given CodeModule, placing the
// path in symbol_file if successful. system_info contains strings
// identifying the operating system and CPU; SymbolSupplier may use to help
// locate the symbol file. system_info may be NULL or its fields may be
// empty if these values are unknown.
virtual SymbolResult GetSymbolFile(const CodeModule *module,
const SystemInfo *system_info,
string *symbol_file) = 0;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_SYMBOL_SUPPLIER_H__

View file

@ -0,0 +1,89 @@
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// system_info.h: Information about the system that was running a program
// when a crash report was produced.
//
// Author: Mark Mentovai
#ifndef GOOGLE_BREAKPAD_PROCESSOR_SYSTEM_INFO_H__
#define GOOGLE_BREAKPAD_PROCESSOR_SYSTEM_INFO_H__
#include <string>
namespace google_breakpad {
using std::string;
struct SystemInfo {
public:
// Resets the SystemInfo object to its default values.
void Clear() {
os.clear();
os_short.clear();
os_version.clear();
cpu.clear();
cpu_info.clear();
}
// A string identifying the operating system, such as "Windows NT",
// "Mac OS X", or "Linux". If the information is present in the dump but
// its value is unknown, this field will contain a numeric value. If
// the information is not present in the dump, this field will be empty.
string os;
// A short form of the os string, using lowercase letters and no spaces,
// suitable for use in a filesystem. Possible values are "windows",
// "mac", and "linux". Empty if the information is not present in the dump
// or if the OS given by the dump is unknown. The values stored in this
// field should match those used by MinidumpSystemInfo::GetOS.
string os_short;
// A string identifying the version of the operating system, such as
// "5.1.2600 Service Pack 2" or "10.4.8 8L2127". If the dump does not
// contain this information, this field will be empty.
string os_version;
// A string identifying the basic CPU family, such as "x86" or "ppc".
// If this information is present in the dump but its value is unknown,
// this field will contain a numeric value. If the information is not
// present in the dump, this field will be empty. The values stored in
// this field should match those used by MinidumpSystemInfo::GetCPU.
string cpu;
// A string further identifying the specific CPU, such as
// "GenuineIntel level 6 model 13 stepping 8". If the information is not
// present in the dump, or additional identifying information is not
// defined for the CPU family, this field will be empty.
string cpu_info;
};
} // namespace google_breakpad
#endif // GOOGLE_BREAKPAD_PROCESSOR_SYSTEM_INFO_H__