mirror of
https://git.suyu.dev/suyu/breakpad.git
synced 2025-12-26 17:25:04 +01:00
Added libdisasm to the repository. This library is no longer under development so there
is no reason not to keep it locally. Implemented a basic disassembler which can be used to scan bytecode for interesting conditions. This should be pretty easy to add to for things other than exploitability if there is a desire. This also adds several tests to the windows exploitability ranking code to take advantage of the disassembler for x86 code. BUG=None TEST=DisassemblerX86Test.* Review URL: http://breakpad.appspot.com/203001 git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@705 4c0a9323-5329-0410-9bdc-e9ce6186880e
This commit is contained in:
parent
c653618a91
commit
2b4274afc4
61 changed files with 12843 additions and 237 deletions
|
|
@ -34,22 +34,29 @@
|
|||
//
|
||||
// Author: Cris Neckar
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "processor/exploitability_win.h"
|
||||
|
||||
#include "google_breakpad/common/minidump_exception_win32.h"
|
||||
#include "google_breakpad/processor/minidump.h"
|
||||
#include "processor/disassembler_x86.h"
|
||||
#include "processor/logging.h"
|
||||
#include "processor/scoped_ptr.h"
|
||||
|
||||
#include "third_party/libdisasm/libdis.h"
|
||||
|
||||
namespace google_breakpad {
|
||||
|
||||
// The cutoff that we use to judge if and address is likely an offset
|
||||
// from null.
|
||||
// from various interesting addresses.
|
||||
static const u_int64_t kProbableNullOffset = 4096;
|
||||
static const u_int64_t kProbableStackOffset = 8192;
|
||||
|
||||
// The various cutoffs for the different ratings.
|
||||
static const size_t kHighCutoff = 85;
|
||||
static const size_t kMediumCutoff = 65;
|
||||
static const size_t kLowCutoff = 45;
|
||||
static const size_t kHighCutoff = 100;
|
||||
static const size_t kMediumCutoff = 80;
|
||||
static const size_t kLowCutoff = 50;
|
||||
static const size_t kInterestingCutoff = 25;
|
||||
|
||||
// Predefined incremental values for conditional weighting.
|
||||
|
|
@ -59,25 +66,69 @@ static const size_t kMediumBump = 50;
|
|||
static const size_t kLargeBump = 70;
|
||||
static const size_t kHugeBump = 90;
|
||||
|
||||
// The maximum number of bytes to disassemble past the program counter.
|
||||
static const size_t kDisassembleBytesBeyondPC = 2048;
|
||||
|
||||
ExploitabilityWin::ExploitabilityWin(Minidump *dump,
|
||||
ProcessState *process_state)
|
||||
: Exploitability(dump, process_state) { }
|
||||
|
||||
ExploitabilityRating ExploitabilityWin::CheckPlatformExploitability() {
|
||||
MinidumpException *exception = dump_->GetException();
|
||||
if (!exception)
|
||||
if (!exception) {
|
||||
BPLOG(INFO) << "Minidump does not have exception record.";
|
||||
return EXPLOITABILITY_ERR_PROCESSING;
|
||||
}
|
||||
|
||||
const MDRawExceptionStream *raw_exception = exception->exception();
|
||||
if (!raw_exception)
|
||||
if (!raw_exception) {
|
||||
BPLOG(INFO) << "Could not obtain raw exception info.";
|
||||
return EXPLOITABILITY_ERR_PROCESSING;
|
||||
}
|
||||
|
||||
u_int64_t address = raw_exception->exception_record.exception_address;
|
||||
const MinidumpContext *context = exception->GetContext();
|
||||
if (!context) {
|
||||
BPLOG(INFO) << "Could not obtain exception context.";
|
||||
return EXPLOITABILITY_ERR_PROCESSING;
|
||||
}
|
||||
|
||||
MinidumpMemoryList *memory_list = dump_->GetMemoryList();
|
||||
bool memory_available = true;
|
||||
if (!memory_list) {
|
||||
BPLOG(INFO) << "Minidump memory segments not available.";
|
||||
memory_available = false;
|
||||
}
|
||||
u_int64_t address = process_state_->crash_address();
|
||||
u_int32_t exception_code = raw_exception->exception_record.exception_code;
|
||||
u_int32_t exception_flags = raw_exception->exception_record.exception_flags;
|
||||
|
||||
u_int32_t exploitability_weight = 0;
|
||||
|
||||
u_int64_t stack_ptr = 0;
|
||||
u_int64_t instruction_ptr = 0;
|
||||
u_int64_t this_ptr = 0;
|
||||
|
||||
switch (context->GetContextCPU()) {
|
||||
case MD_CONTEXT_X86:
|
||||
stack_ptr = context->GetContextX86()->esp;
|
||||
instruction_ptr = context->GetContextX86()->eip;
|
||||
this_ptr = context->GetContextX86()->ecx;
|
||||
break;
|
||||
case MD_CONTEXT_AMD64:
|
||||
stack_ptr = context->GetContextAMD64()->rsp;
|
||||
instruction_ptr = context->GetContextAMD64()->rip;
|
||||
this_ptr = context->GetContextAMD64()->rcx;
|
||||
break;
|
||||
default:
|
||||
BPLOG(INFO) << "Unsupported architecture.";
|
||||
return EXPLOITABILITY_ERR_PROCESSING;
|
||||
}
|
||||
|
||||
// Check if we are executing on the stack.
|
||||
if (instruction_ptr <= (stack_ptr + kProbableStackOffset) &&
|
||||
instruction_ptr >= (stack_ptr - kProbableStackOffset))
|
||||
exploitability_weight += kHugeBump;
|
||||
|
||||
switch (exception_code) {
|
||||
// This is almost certainly recursion.
|
||||
case MD_EXCEPTION_CODE_WIN_STACK_OVERFLOW:
|
||||
|
|
@ -120,18 +171,22 @@ ExploitabilityRating ExploitabilityWin::CheckPlatformExploitability() {
|
|||
|
||||
case MD_EXCEPTION_CODE_WIN_ACCESS_VIOLATION:
|
||||
bool near_null = (address <= kProbableNullOffset);
|
||||
bool bad_read = false;
|
||||
bool bad_write = false;
|
||||
if (raw_exception->exception_record.number_parameters >= 1) {
|
||||
MDAccessViolationTypeWin av_type =
|
||||
static_cast<MDAccessViolationTypeWin>
|
||||
(raw_exception->exception_record.exception_information[0]);
|
||||
switch (av_type) {
|
||||
case MD_ACCESS_VIOLATION_WIN_READ:
|
||||
bad_read = true;
|
||||
if (near_null)
|
||||
exploitability_weight += kSmallBump;
|
||||
else
|
||||
exploitability_weight += kMediumBump;
|
||||
break;
|
||||
case MD_ACCESS_VIOLATION_WIN_WRITE:
|
||||
bad_write = true;
|
||||
if (near_null)
|
||||
exploitability_weight += kSmallBump;
|
||||
else
|
||||
|
|
@ -144,22 +199,79 @@ ExploitabilityRating ExploitabilityWin::CheckPlatformExploitability() {
|
|||
exploitability_weight += kHugeBump;
|
||||
break;
|
||||
default:
|
||||
BPLOG(INFO) << "Unrecognized access violation type.";
|
||||
return EXPLOITABILITY_ERR_PROCESSING;
|
||||
break;
|
||||
}
|
||||
MinidumpMemoryRegion *instruction_region = 0;
|
||||
if (memory_available)
|
||||
instruction_region = memory_list->GetMemoryRegionForAddress(instruction_ptr);
|
||||
if (!near_null && instruction_region &&
|
||||
context->GetContextCPU() == MD_CONTEXT_X86 &&
|
||||
(bad_read || bad_write)) {
|
||||
// Perform checks related to memory around instruction pointer.
|
||||
u_int32_t memory_offset = instruction_ptr - instruction_region->GetBase();
|
||||
u_int32_t available_memory = instruction_region->GetSize() - memory_offset;
|
||||
available_memory = available_memory > kDisassembleBytesBeyondPC ?
|
||||
kDisassembleBytesBeyondPC : available_memory;
|
||||
if (available_memory) {
|
||||
const u_int8_t *raw_memory = instruction_region->GetMemory() + memory_offset;
|
||||
DisassemblerX86 disassembler(raw_memory, available_memory, instruction_ptr);
|
||||
disassembler.NextInstruction();
|
||||
if (bad_read)
|
||||
disassembler.setBadRead();
|
||||
else
|
||||
disassembler.setBadWrite();
|
||||
if (disassembler.currentInstructionValid()) {
|
||||
// Check if the faulting instruction falls into one of
|
||||
// several interesting groups.
|
||||
switch (disassembler.currentInstructionGroup()) {
|
||||
case libdis::insn_controlflow:
|
||||
exploitability_weight += kLargeBump;
|
||||
break;
|
||||
case libdis::insn_string:
|
||||
exploitability_weight += kHugeBump;
|
||||
break;
|
||||
}
|
||||
// Loop the disassembler through the code and check if it
|
||||
// IDed any interesting conditions in the near future.
|
||||
// Multiple flags may be set so treat each equally.
|
||||
while (disassembler.NextInstruction() &&
|
||||
disassembler.currentInstructionValid() &&
|
||||
!disassembler.endOfBlock())
|
||||
continue;
|
||||
if (disassembler.flags() & DISX86_BAD_BRANCH_TARGET)
|
||||
exploitability_weight += kLargeBump;
|
||||
if (disassembler.flags() & DISX86_BAD_ARGUMENT_PASSED)
|
||||
exploitability_weight += kTinyBump;
|
||||
if (disassembler.flags() & DISX86_BAD_WRITE)
|
||||
exploitability_weight += kMediumBump;
|
||||
if (disassembler.flags() & DISX86_BAD_BLOCK_WRITE)
|
||||
exploitability_weight += kMediumBump;
|
||||
if (disassembler.flags() & DISX86_BAD_READ)
|
||||
exploitability_weight += kTinyBump;
|
||||
if (disassembler.flags() & DISX86_BAD_BLOCK_READ)
|
||||
exploitability_weight += kTinyBump;
|
||||
if (disassembler.flags() & DISX86_BAD_COMPARISON)
|
||||
exploitability_weight += kTinyBump;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
BPLOG(INFO) << "Access violation type parameter missing.";
|
||||
return EXPLOITABILITY_ERR_PROCESSING;
|
||||
}
|
||||
}
|
||||
|
||||
// Based on the calculated weight we return a simplified classification.
|
||||
if (exploitability_weight > kHighCutoff)
|
||||
BPLOG(INFO) << "Calculated exploitability weight: " << exploitability_weight;
|
||||
if (exploitability_weight >= kHighCutoff)
|
||||
return EXPLOITABILITY_HIGH;
|
||||
if (exploitability_weight > kMediumCutoff)
|
||||
if (exploitability_weight >= kMediumCutoff)
|
||||
return EXPLOITABLITY_MEDIUM;
|
||||
if (exploitability_weight > kLowCutoff)
|
||||
if (exploitability_weight >= kLowCutoff)
|
||||
return EXPLOITABILITY_LOW;
|
||||
if (exploitability_weight > kInterestingCutoff)
|
||||
if (exploitability_weight >= kInterestingCutoff)
|
||||
return EXPLOITABILITY_INTERESTING;
|
||||
|
||||
return EXPLOITABILITY_NONE;
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue