Minidumps never contain MD_LINUX_DSO_DEBUG info when breakpad is in a shared library

A=Mike Hommey <mh@glandium.org>
R=ted at http://breakpad.appspot.com/422002/

git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1044 4c0a9323-5329-0410-9bdc-e9ce6186880e
This commit is contained in:
ted.mielczarek@gmail.com 2012-09-19 12:55:16 +00:00
parent 67364c1326
commit 0e91d185ca
10 changed files with 668 additions and 572 deletions

View file

@ -66,20 +66,24 @@ inline static bool IsMappedFileOpenUnsafe(
namespace google_breakpad {
// All interesting auvx entry types are below AT_SYSINFO_EHDR
#define AT_MAX AT_SYSINFO_EHDR
LinuxDumper::LinuxDumper(pid_t pid)
: pid_(pid),
crash_address_(0),
crash_signal_(0),
crash_thread_(0),
threads_(&allocator_, 8),
mappings_(&allocator_) {
mappings_(&allocator_),
auxv_(&allocator_, AT_MAX + 1) {
}
LinuxDumper::~LinuxDumper() {
}
bool LinuxDumper::Init() {
return EnumerateThreads() && EnumerateMappings();
return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
}
bool
@ -131,58 +135,30 @@ LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
return success;
}
void*
LinuxDumper::FindBeginningOfLinuxGateSharedLibrary(pid_t pid) const {
bool LinuxDumper::ReadAuxv() {
char auxv_path[NAME_MAX];
if (!BuildProcPath(auxv_path, pid, "auxv"))
return NULL;
if (!BuildProcPath(auxv_path, pid_, "auxv")) {
return false;
}
// Find the AT_SYSINFO_EHDR entry for linux-gate.so
// See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
// information.
int fd = sys_open(auxv_path, O_RDONLY, 0);
if (fd < 0) {
return NULL;
return false;
}
elf_aux_entry one_aux_entry;
bool res = false;
while (sys_read(fd,
&one_aux_entry,
sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
one_aux_entry.a_type != AT_NULL) {
if (one_aux_entry.a_type == AT_SYSINFO_EHDR) {
sys_close(fd);
return reinterpret_cast<void*>(one_aux_entry.a_un.a_val);
if (one_aux_entry.a_type <= AT_MAX) {
auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
res = true;
}
}
sys_close(fd);
return NULL;
}
void*
LinuxDumper::FindEntryPoint(pid_t pid) const {
char auxv_path[NAME_MAX];
if (!BuildProcPath(auxv_path, pid, "auxv"))
return NULL;
int fd = sys_open(auxv_path, O_RDONLY, 0);
if (fd < 0) {
return NULL;
}
// Find the AT_ENTRY entry
elf_aux_entry one_aux_entry;
while (sys_read(fd,
&one_aux_entry,
sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
one_aux_entry.a_type != AT_NULL) {
if (one_aux_entry.a_type == AT_ENTRY) {
sys_close(fd);
return reinterpret_cast<void*>(one_aux_entry.a_un.a_val);
}
}
sys_close(fd);
return NULL;
return res;
}
bool LinuxDumper::EnumerateMappings() {
@ -192,15 +168,17 @@ bool LinuxDumper::EnumerateMappings() {
// linux_gate_loc is the beginning of the kernel's mapping of
// linux-gate.so in the process. It doesn't actually show up in the
// maps list as a filename, so we use the aux vector to find it's
// load location and special case it's entry when creating the list
// of mappings.
const void* linux_gate_loc;
linux_gate_loc = FindBeginningOfLinuxGateSharedLibrary(pid_);
// maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
// aux vector entry, which gives the information necessary to special
// case its entry when creating the list of mappings.
// See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
// information.
const void* linux_gate_loc =
reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
// Although the initial executable is usually the first mapping, it's not
// guaranteed (see http://crosbug.com/25355); therefore, try to use the
// actual entry point to find the mapping.
const void* entry_point_loc = FindEntryPoint(pid_);
const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);
const int fd = sys_open(maps_path, O_RDONLY, 0);
if (fd < 0)

View file

@ -59,6 +59,9 @@ typedef Elf32_auxv_t elf_aux_entry;
#elif defined(__x86_64)
typedef Elf64_auxv_t elf_aux_entry;
#endif
typedef typeof(((elf_aux_entry*) 0)->a_un.a_val) elf_aux_val_t;
// When we find the VDSO mapping in the process's address space, this
// is the name we use for it when writing it to the minidump.
// This should always be less than NAME_MAX!
@ -124,6 +127,7 @@ class LinuxDumper {
const wasteful_vector<pid_t> &threads() { return threads_; }
const wasteful_vector<MappingInfo*> &mappings() { return mappings_; }
const MappingInfo* FindMapping(const void* address) const;
const wasteful_vector<elf_aux_val_t>& auxv() { return auxv_; }
// Find a block of memory to take as the stack given the top of stack pointer.
// stack: (output) the lowest address in the memory area
@ -151,15 +155,6 @@ class LinuxDumper {
unsigned int mapping_id,
uint8_t identifier[sizeof(MDGUID)]);
// Utility method to find the location of where the kernel has
// mapped linux-gate.so in memory(shows up in /proc/pid/maps as
// [vdso], but we can't guarantee that it's the only virtual dynamic
// shared object. Parsing the auxilary vector for AT_SYSINFO_EHDR
// is the safest way to go.)
void* FindBeginningOfLinuxGateSharedLibrary(pid_t pid) const;
// Utility method to find the entry point location.
void* FindEntryPoint(pid_t pid) const;
uintptr_t crash_address() const { return crash_address_; }
void set_crash_address(uintptr_t crash_address) {
crash_address_ = crash_address;
@ -172,6 +167,8 @@ class LinuxDumper {
void set_crash_thread(pid_t crash_thread) { crash_thread_ = crash_thread; }
protected:
bool ReadAuxv();
virtual bool EnumerateMappings();
virtual bool EnumerateThreads() = 0;
@ -206,6 +203,9 @@ class LinuxDumper {
// Info from /proc/<pid>/maps.
wasteful_vector<MappingInfo*> mappings_;
// Info from /proc/<pid>/auxv
wasteful_vector<elf_aux_val_t> auxv_;
};
} // namespace google_breakpad

View file

@ -287,7 +287,8 @@ TEST(LinuxPtraceDumperTest, MappingsIncludeLinuxGate) {
LinuxPtraceDumper dumper(getpid());
ASSERT_TRUE(dumper.Init());
void* linux_gate_loc = dumper.FindBeginningOfLinuxGateSharedLibrary(getpid());
void* linux_gate_loc =
reinterpret_cast<void *>(dumper.auxv()[AT_SYSINFO_EHDR]);
ASSERT_TRUE(linux_gate_loc);
bool found_linux_gate = false;

View file

@ -423,40 +423,9 @@ class MinidumpWriter {
}
bool Dump() {
// The dynamic linker makes information available that helps gdb find all
// DSOs loaded into the program. If we can access this information, we dump
// it to a MD_LINUX_DSO_DEBUG stream.
struct r_debug* r_debug = NULL;
uint32_t dynamic_length = 0;
#if !defined(__ANDROID__)
// This code assumes the crashing process is the same as this process and
// may hang or take a long time to complete if not so.
// Thus, we skip this code for a post-mortem based dump.
if (!dumper_->IsPostMortem()) {
// The Android NDK is missing structure definitions for most of this.
// For now, it's simpler just to skip it.
for (int i = 0;;) {
ElfW(Dyn) dyn;
dynamic_length += sizeof(dyn);
// NOTE: Use of _DYNAMIC assumes this is the same process as the
// crashing process. This loop will go forever if it's out of bounds.
dumper_->CopyFromProcess(&dyn, GetCrashThread(), _DYNAMIC+i++,
sizeof(dyn));
if (dyn.d_tag == DT_DEBUG) {
r_debug = (struct r_debug*)dyn.d_un.d_ptr;
continue;
} else if (dyn.d_tag == DT_NULL) {
break;
}
}
}
#endif
// A minidump file contains a number of tagged streams. This is the number
// of stream which we write.
unsigned kNumWriters = 12;
if (r_debug)
++kNumWriters;
unsigned kNumWriters = 13;
TypedMDRVA<MDRawHeader> header(&minidump_writer_);
TypedMDRVA<MDRawDirectory> dir(&minidump_writer_);
@ -533,12 +502,10 @@ class MinidumpWriter {
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
if (r_debug) {
dirent.stream_type = MD_LINUX_DSO_DEBUG;
if (!WriteDSODebugStream(&dirent, r_debug, dynamic_length))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
}
dirent.stream_type = MD_LINUX_DSO_DEBUG;
if (!WriteDSODebugStream(&dirent))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
// If you add more directory entries, don't forget to update kNumWriters,
// above.
@ -1000,13 +967,58 @@ class MinidumpWriter {
return true;
}
bool WriteDSODebugStream(MDRawDirectory* dirent, struct r_debug* r_debug,
uint32_t dynamic_length) {
bool WriteDSODebugStream(MDRawDirectory* dirent) {
#if defined(__ANDROID__)
return false;
#else
// The caller provided us with a pointer to "struct r_debug". We can
// look up the "r_map" field to get a linked list of all loaded DSOs.
ElfW(Phdr)* phdr = reinterpret_cast<ElfW(Phdr) *>(dumper_->auxv()[AT_PHDR]);
char* base;
int phnum = dumper_->auxv()[AT_PHNUM];
if (!phnum || !phdr)
return false;
// Assume the program base is at the beginning of the same page as the PHDR
base = reinterpret_cast<char *>(reinterpret_cast<uintptr_t>(phdr) & ~0xfff);
// Search for the program PT_DYNAMIC segment
ElfW(Addr) dyn_addr = 0;
for (; phnum >= 0; phnum--, phdr++) {
ElfW(Phdr) ph;
dumper_->CopyFromProcess(&ph, GetCrashThread(), phdr, sizeof(ph));
// Adjust base address with the virtual address of the PT_LOAD segment
// corresponding to offset 0
if (ph.p_type == PT_LOAD && ph.p_offset == 0) {
base -= ph.p_vaddr;
}
if (ph.p_type == PT_DYNAMIC) {
dyn_addr = ph.p_vaddr;
}
}
if (!dyn_addr)
return false;
ElfW(Dyn) *dynamic = reinterpret_cast<ElfW(Dyn) *>(dyn_addr + base);
// The dynamic linker makes information available that helps gdb find all
// DSOs loaded into the program. If this information is indeed available,
// dump it to a MD_LINUX_DSO_DEBUG stream.
struct r_debug* r_debug = NULL;
uint32_t dynamic_length = 0;
for (int i = 0;;) {
ElfW(Dyn) dyn;
dynamic_length += sizeof(dyn);
dumper_->CopyFromProcess(&dyn, GetCrashThread(), dynamic+i++, sizeof(dyn));
if (dyn.d_tag == DT_DEBUG) {
r_debug = reinterpret_cast<struct r_debug*>(dyn.d_un.d_ptr);
continue;
} else if (dyn.d_tag == DT_NULL) {
break;
}
}
// The "r_map" field of that r_debug struct contains a linked list of all
// loaded DSOs.
// Our list of DSOs potentially is different from the ones in the crashing
// process. So, we have to be careful to never dereference pointers
// directly. Instead, we use CopyFromProcess() everywhere.
@ -1069,10 +1081,10 @@ class MinidumpWriter {
debug.get()->dso_count = dso_count;
debug.get()->brk = (void*)debug_entry.r_brk;
debug.get()->ldbase = (void*)debug_entry.r_ldbase;
debug.get()->dynamic = (void*)&_DYNAMIC;
debug.get()->dynamic = dynamic;
char *dso_debug_data = new char[dynamic_length];
dumper_->CopyFromProcess(dso_debug_data, GetCrashThread(), &_DYNAMIC,
dumper_->CopyFromProcess(dso_debug_data, GetCrashThread(), dynamic,
dynamic_length);
debug.CopyIndexAfterObject(0, dso_debug_data, dynamic_length);
delete[] dso_debug_data;

View file

@ -34,6 +34,7 @@
#include <sys/types.h>
#include <ucontext.h>
#include <unistd.h>
#include <ucontext.h>
#include <string>
@ -172,7 +173,8 @@ TEST(MinidumpWriterTest, MappingInfo) {
ExceptionHandler::CrashContext context;
memset(&context, 0, sizeof(context));
context.tid = 1;
ASSERT_EQ(0, getcontext(&context.context));
context.tid = child;
AutoTempDir temp_dir;
string templ = temp_dir.path() + "/minidump-writer-unittest";
@ -210,6 +212,20 @@ TEST(MinidumpWriterTest, MappingInfo) {
EXPECT_EQ(kMemoryName, module->code_file());
EXPECT_EQ(module_identifier, module->debug_identifier());
u_int32_t len;
// These streams are expected to be there
EXPECT_TRUE(minidump.SeekToStreamType(MD_THREAD_LIST_STREAM, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_MEMORY_LIST_STREAM, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_EXCEPTION_STREAM, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_SYSTEM_INFO_STREAM, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_CPU_INFO, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_PROC_STATUS, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_CMD_LINE, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_ENVIRON, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_AUXV, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_MAPS, &len));
EXPECT_TRUE(minidump.SeekToStreamType(MD_LINUX_DSO_DEBUG, &len));
close(fds[1]);
}